

The MQTT Driver
The MQTT driver provides a method to publish values from a North device to an MQTT message
broker. The broker stores these values and delivers them to any IoT application that subscribes
to them. A range of MQTT message brokers are available, both cloud hosted and on-premises.
Available for Commander and ObSys.

This document relates to MQTT driver version 2.0

Please read the Commander Manual or ObSys Manual alongside this document, available from
www.northbt.com

http://www.northbt.com/

The MQTT Driver 2

Contents

Purpose of MQTT Driver .. 3
Values .. 3
Prerequisites ... 3

Detailed Operation ... 4
MQTT Broker ... 4
Topic Name ... 4
Security ... 4
Publish Message ... 5
Subscribe Message ... 6
Publish Message (Data Manager) ... 7

Using the Driver .. 8
Starting the Interface .. 8
Setting up the Driver ... 8
Checking Communications .. 8

Object Specifications .. 9
Device Top-Level Objects ... 9
MQTT Setup .. 10
MQTT Broker ... 11
Database ... 12
Filter by Page .. 12
Database Privilege Levels ... 13
Publish/Subscribe ... 14
Advanced Settings .. 15

Appendix A: Example MQTT Brokers .. 16
HiveMQ .. 16
Azure IoT Hub .. 16

Driver Versions .. 17

The MQTT Driver 3

Purpose of MQTT Driver
The MQTT driver provides a method to publish values from a North device to an MQTT (Message Queuing
Telemetry Transport) message broker. The broker stores these values and delivers them to an IoT/M2M
application that subscribes to the data topic. MQTT message brokers are available as part of many IoT
platforms, both cloud hosted and on-premises.

MQTT uses a publish-subscribe model. The MQTT driver publishes a value from Essential Data within the
North device using a topic name. Integrate data collected using North interface technology directly into
your own IoT application by subscribing to these topics. Optionally, the driver can subscribe to a topic to
receive value changes from your application.

The driver connects to an IP network, with access to an MQTT message broker provided on the local
network or Internet.

The JSONNotify is also available, sending data to an endpoint server using Webhooks.

Values
MQTT presents values from the North device’s Essential Data. As a value updates, or periodically, the
values are published to an MQTT broker in JSON format.

Essential Data contains 640 values on Commander, and 1280 values on ObSys. Access to these values can
be controlled by configuring a page range filter and privilege levels within the driver.

Prerequisites
An MQTT broker is required with support for non-secure TCP port 1883 (TLS is not supported by
Commander).

MQTT brokers providing QoS level 1, and protocol version 5 or 3.1.1 are supported.

If the MQTT broker is Internet-based, the North device should have a DNS Server address and Gateway
address configured.

The MQTT Driver 4

Fig. 1 North to MQTT Broker

Detailed Operation
MQTT is a lightweight protocol that’s designed for connecting power-constrained devices over low-
bandwidth networks. MQTT is the preferred protocol for connecting IoT devices to the cloud. Platforms
such as HiveMQ, and Mosquitto all provide MQTT connectivity.

The protocol uses a publish-subscribe model. This is event driven, allowing messages to be pushed to
clients.

MQTT Broker
The central communication hub is the MQTT broker (Fig. 1). It is in charge of dispatching all messages
between the senders and receivers.

The driver maintains a permanent connection to the broker. It publishes a value using a topic name. Your
application can subscribe to these topics to receive the values.

See Appendix A for examples of connecting to MQTT brokers.

Topic Name
When the driver publishes a message to the broker, it includes a topic name in the message. This topic is
the routing information for the broker. Each client that wants to receive messages subscribes to a certain
topic and the broker delivers all messages with the matching topic to the client. Therefore the clients
don’t have to know each other, they only communicate using this topic.

A topic is a text string that can have levels of hierarchy, each separated by a slash (‘/’). A sample topic for
sending values from the North device could be ‘North_MQTT/Building_5/HVAC’. A client could subscribe
to this exact topic, or use a wildcard for a group of topics.

The driver publishes each value to the broker using a separate MQTT message. These messages can
either all use the same topic name, or each value can have a unique topic name by incorporating a label
from the value. A unique topic name for each value could be used alongside the retain value option.

You can set the topic name within the driver’s Publish/Subscribe object.

Security
To protect against unauthorised clients, the driver can identify itself with the broker by supplying a user
name and password.

On Commander, the driver supports non-secure MQTT only, TLS connections are not supported so a VPN
should be used. On ObSys, the driver can additionally support TLS connections.

North
device

MQTT
Broker

Publish Subscribe/
Publish

The MQTT Driver 5

Publish Message
The MQTT driver sends a publish message containing a single value from Essential Data within the North
device. The message can be sent either on change-of-value, or periodically.

Messages are sent in JSON format with utf-8 encoding.

Message Content

{
 "id": number,
 "name": string,
 "value": various,
 "status": string
 "time": string,
 "units": string,
 "type": string
}

Properties
Key Value Description
id Number Essential Data object identifier is in the range 1…1280 (depending on

platform)
name String Combined label of page and object. The name can be prefixed with a

device identifier if required
value Number,

Boolean, String,
or Array

Value of object.
The value depends on the object type configured in Essential Data:
Float, Num, ENum – Number
OffOn, NoYes – Boolean
Text – String (max. 32 chars)
DateTime – String in ISO-8601 format, ‘yyyy-mm-ddThh:mm:ss’
Date – String in ISO-8601 format, ‘yyyy-mm-dd’
Times – Array of objects – each containing a start (s) and end (e) time
Profile – Array of objects – each containing a time (s) and value (v)

s String Start time in 24hr format, ‘hh:mm’. Provided with Times and Profile types
e String End time in 24hr format, ‘hh:mm’. Only provided with times types
v Number Profile value. Only provided with profile types
status String Status of the value: ‘ok’ – value healthy, ‘alarm’ – out-of-range alarm,

‘comms’ – communications fault
time String Date and time (UTC) in ISO-8601 format, ‘yyyy-mm-ddThh:mm:ssZ’
units String Units, if available, for value (max. 8 chars)
type String Essential Data object type, one of the following:

text, noyes, offon, num, enum, float, datetime, date, times, or profile
ea Array Array of strings containing a label for each enumerated value (value-0,

value-1, etc). Only provided with enum types

Example

{
 "id": 17,
 "name": "UPS Status - Load power",
 "value": 12.3,
 "status": "ok",
 "time": "2013-12-31T23:40:16Z",
 "units": "W",
 "type": "float"
}

The MQTT Driver 6

Subscribe Message
The MQTT driver expects to receive a subscribe message containing a single value to write to Essential
Data. The ‘id’ and ‘value’ keys must be present, any other properties will be ignored.

Objects must be set to adjustable within Essential Data, with an adequate access security level.

Messages must be sent in JSON format with utf-8 encoding.

Message Content

{
 "id": number,
 "value": various
}

Properties
Key Value Description
id Number Essential Data object identifier is in the range 1…1280
value Number,

Boolean, String,
or Array

Value of object.
DateTime – String in ISO-8601 format, ‘yyyy-mm-ddThh:mm:ss’
Date – String in ISO-8601 format, ‘yyyy-mm-dd’
Times – Array of objects – each containing a start (s) and end (e) time
Profile – Array of objects – each containing a time (s) and value (v)

s String Start time in 24hr format, ‘hh:mm’. Provided with Times and Profile types
e String End time in 24hr format, ‘hh:mm’. Only provided with times types
v Number Profile value. Only provided with profile types

Example

{
 "id": 17,
 "value": 14
}

The MQTT Driver 7

Publish Message (Data Manager)
Available on ObSys platform only.

The MQTT driver sends a publish message with a single value from Data Manager. The message can be
sent periodically, for example every 15 or 30 minutes.

Messages are sent in JSON format with utf-8 encoding.

Message Content

{
 "name": string,
 "value": number,
 "status": string
 "time": string,
 "units": string,
}

Properties
Key Value Description
name String Data Manager channel label. The name can be prefixed with a device

identifier if required
value Number Value of object (floating point number)
status Number Status of the value: ‘ok’ – value healthy, ‘alarm’ – out-of-range alarm,

‘comms’ – communications fault
time String Date and time (UTC) in ISO-8601 format, ‘yyyy-mm-ddThh:mm:ssZ’
units String Units, if available, for value (max. 8 chars)

Example

{
 "name": "UPS Status Load power",
 "value": 12.3,
 "status": 0,
 "time": "2023-12-11T15:07:46Z",
 "units": "W"
}

The MQTT Driver 8

Using the Driver
On ObSys and Commander, the MQTT driver is pre-installed. Once started, you will need to set up the
driver before it can communicate with an MQTT broker.

Starting the Interface
 To start an interface using the MQTT driver, follow these steps:

 Start Engineering your North device using ObSys

 Navigate to Configuration, Interfaces, and set an unused Interface to ‘MQTT’ to start the
particular interface

 Navigate to the top-level of your North device and re-scan it

The driver setup object (Mc), labelled MQTT Setup, should now be available. If this object is not
available, check an interface licence is available and the driver is installed.

Setting up the Driver
 To set up the driver, follow these steps:

 Navigate to the MQTT Setup object (Mc). For example, if you started interface 1 with the driver
earlier, then the object reference will be ‘M1’

 Navigate to MQTT Broker and set the Host name and Client ID for your broker

 Navigate to Publish/Subscribe and set the Publish Topic Name.

Checking Communications
After configuring Essential Data or Extra Data, the driver will automatically connect to send information
to the broker.

Use the driver objects MQTT Broker connected (DS) to check if the driver has connected to the broker. If
it has not connected, navigate to MQTT Broker and check Connection State (CS), Connect Last
Response (CR) and Disconnect Last Reason (DR) objects for more information.

The MQTT Driver 9

Object Specifications
Once an interface is started, one or more extra objects become available within the top-level object of
the device. As with all North objects, each of these extra objects may contain sub-objects, (and each of
these may contain sub-objects, and so on) - the whole object structure being a multi-layer hierarchy. It is
possible to navigate around the objects using the ObSys Engineering Software.

Each object is specified below, along with its sub-objects.

Device Top-Level Objects
When an interface is started using the MQTT driver, the objects below become available within the top-
level object of the device. For example, if interface 1 is started, then the object reference ‘M1’ becomes
available.

Description Reference Type
MQTT Setup
Set up the MQTT driver, started on
interface c (c is the interface number)

Mc Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v20]
On the ObSys platform this will be
[OSM v20\MQTT v20]

The MQTT Driver 10

MQTT Setup
Object Type: [OSM v20\MQTT v20]
Object Type: [CDM v20\MQTT v20]

The MQTT driver contains the following objects.

Description Reference Type
Enable MQTT
Enable the connection to the MQTT broker

E Obj\NoYes; Adjustable

MQTT Broker connected
Indicates the driver has connected and
authenticated with the broker

DS Obj\NoYes

MQTT Broker
How to connect to the broker

N Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v20\Broker]
On the ObSys platform this will be
[OSM v20\MQTT v20\Broker]

Database
Control what values are available from
Essential Data

D Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v10\Data]
On the ObSys platform this will be
[OSM v20\MQTT v10\Data]

Publish/Subscribe
Topic name rate for values from the
database to be sent to the broker

PV Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v10\Publish]
On the ObSys platform this will be
[OSM v20\MQTT v10\Publish]

Advanced Settings
Additional settings

AS Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v10\Advanced]
On the ObSys platform this will be
[OSM v20\MQTT v10\Advanced]

Debug Enable
This will store additional debug
information in the record file. Use this
option only when instructed by North
Support

DE Obj\NoYes; Adjustable

The MQTT Driver 11

MQTT Broker
Object Type: [OSM v20\MQTT v20\Broker]
Object Type: [CDM v20\MQTT v20\Broker]

The MQTT Broker contains the following objects required to connect to the server.

Description Reference Type
Host name or IP address
Host name or IP address of MQTT broker.
Set to ‘reset’, to load default driver
settings (see also Appendix A)

IA Obj\Text; Max 125 chars; Adjustable

Client ID
The client identifier is unique and
identifies North device to the server. Refer
to broker documentation for format
required

CID Obj\Text; Max 125 chars; Adjustable

User ID
User name to authenticate with broker

AID Obj\Text; Max 125 chars; Adjustable

Password
Password to authenticate with broker

APW Obj\Text; Max 125 chars; Adjustable

Keep Alive (secs)
Maximum time between messages before
the driver should send a keep alive
message

KA Obj\Num: 15…6000; Adjustable
Default: 60 seconds.

Connection State
Displays current connection state between
driver and the broker

CS Obj\ENum: 0...3
Values: 0=Offline, 1=Connecting to broker, 2=Online,
3=Disconnecting

Connect Last Response
Result of the last connection to the broker

CR Obj\Text; Max 30 chars

Disconnect Last Reason
Reason for last disconnection from broker

DR Obj\Text; Max 30 chars

Online Since
Date and time connection established with
broker

CT Obj\DateTime

Online Count
Number of successful connections to
broker

CC Obj\Num

The MQTT Driver 12

Database
Object Type: [OSM v20\MQTT v20\Data]
Object Type: [CDM v20\MQTT v20\Data]

Database contains the following objects. By default, all values from Essential Data are available to the
MQTT driver. The Filter by Page (F) and Privilege Levels (P) objects provide finer control of which values
are available.

Description Reference Type
Values Available
The number of values available to MQTT
with any filter applied

C Obj\Num

Database Source
Available on ObSys platform only

S Obj\Enum; Adjustable
0: Essential Data, 1: Data Manager

Filter by Page
Restrict access to only the Essential Data
pages specified

F Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v20\Filter]
On the ObSys platform this will be
[OSM v20\MQTT v20\Filter]

Read Privilege Levels
Configure privilege levels to control read
access to Essential Data

RP Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v20\Security]
On the ObSys platform this will be
[OSM v20\MQTT v20\Security]

Write Privilege Levels
Configure privilege levels to control write
access to Essential Data

WP Fixed Container:
On the Commander platform this will be
[CDM v20\MQTT v20\Security]
On the ObSys platform this will be
[OSM v20\MQTT v20\Security]

Filter by Page
Object Type: [OSM v20\MQTT v20\Filter]
Object Type: [CDM v20\MQTT v20\Filter]

Filter by Page limits the data available to the MQTT driver. Specify a start and end page from Essential
Data, and only values from these pages will be sent to the MQTT broker.

Description Reference Type
Start Page
First page of Essential Data objects to
include. Set to ‘0’ to remove the filter.

SP Obj\Num: 0…128; Adjustable

End page (inclusive)
Last page of Essential Data objects to
include.

EP Obj\Num: 0…128; Adjustable

Active filter
Information on the start and end page-
objects

I Obj\Text

The MQTT Driver 13

Database Privilege Levels
Object Type: [CDM v20\MQTT v20\Security]
Object Type: [OSM v20\MQTT v20\Security]

Security Areas and Levels

Within the North security model, there are eight security areas. Security areas could be actual areas in a
building, but are normally functional areas – for example, ‘environmental control’ and ‘North
engineering’ areas would allow a user to have different privileges in controlling set points and
engineering Commanders.

Typically, a user is assigned a privilege level in each of the eight areas. The level is in the range zero to
seven, seven being the most powerful. When a user wishes to pass a door, his/her privilege level in the
door’s area is checked against the minimum required for that area – and then either allowed to pass, or
rejected.

The engineer must decide the use of the eight areas. The engineer must also decide the power of the
privilege levels. Most systems use only a few levels per area: 0=None, 1=Guest, 2=User, 7=Administrator.

As an example, imagine a page of values in Essential Data. The page needs a user to have a minimum
privilege level of 2 in area 1 before it can be viewed. The page is available in a Web browser that checks
users with a security database. User A has privilege level 7 in area 1 – she can view the page. User B has
privilege level 5 in area 1 – he can also view the page. User C has privilege level 1 in area 1 – she cannot
view the page.

The example continues: within this page of values in Essential Data is a temperature set point object.
Users need a minimum privilege level of 6 in area 1 to adjust it – therefore User A can adjust the set point,
but User B cannot.

Specifying Access Security

Essential Data and Extra Data have Access Security objects to control who can view a page, and who can
adjust an adjustable object.

Each Access Security object has a two-digit value. Each controls the access to a particular feature - such
as viewing the page, or adjusting the value. The two-digit value is made up of the area digit (1-8),
followed by the minimum privilege level (1-7) – for example, if the minimum privilege level is 6 in area 2,
then the two digit value is 26. If the value is 00, then no security checks are made.

MQTT Driver

The Database Privilege Levels object contains a privilege level for each of the eight security areas,
representing a virtual user. The MQTT driver uses these to control access to Essential Data when reading
or writing a value.

Description Reference Type
Privilege Level in Area x
The area, x, can be in the range 1…8

Px Obj\Num; Adjustable; Range: 0…7

The MQTT Driver 14

Publish/Subscribe
Object Type: [OSM v20\MQTT v20\Publish]
Object Type: [CDM v20\MQTT v20\Publish]

After the driver has connected to an MQTT broker, it can publish messages to send a value from the
database, and subscribe to a topic and receive a value.

Each publish message contains a topic name, which will be used by the broker to forward the message to
interested subscribers. A topic is a text string that can have levels of hierarchy, each separated by a slash
(‘/’).

The driver publishes each value to the broker using a separate MQTT message. These messages can
either all use the same topic name, such as ‘North_MQTT/Building_5/HVAC’, or each value can have a
unique topic name by incorporating a variable, such as ‘North_MQTT/Building_5/$(ol)’. A unique topic
name for each value could be used alongside the Publish Retain Value (RV) option.

Publish Message contains the following objects.

Description Reference Type
Publish Topic Name
The topic name identifying the publish
message.
Use the following variables to make the
topic unique for each database value:
$(oid) – Object identifier (1…1280)
$(fl) – Full label
$(pl) – Essential Data Page label
$(ol) – Essential Data Object label.
Space characters will be replaced with an
underscore (_).

PT Obj\Text: 125 chars; Adjustable

Publish Rate
Frequency to publish values

PR Obj\ENum; Adjustable
0: COV, 3: 15mins, 4: 30mins, 5:1hr

Publish Retain Value
Indicates the broker should retain the last
value using this topic name

RV Obj\OffOn; Adjustable

Subscribe to Changes
Subscribes to value changes made by
other clients. These values are written to
Essential Data.
Available with MQTT v5 brokers only

SE Obj\NoYes; Adjustble

Subscribe Topic Name
Topic name to subscribe to. This may
contain the wildcard ‘#’.
E.g. ‘North_MQTT/Building_5/#’

ST Obj\Text: 125 chars; Adjustable

The MQTT Driver 15

Advanced Settings
Object Type: [OSM v20\MQTT v20\Advanced]
Object Type: [CDM v20\MQTT v20\Advanced]

Advanced Settings contains the following objects.

Description Reference Type
MQTT Version

V Obj\Enum; Adjustable
0: v3.1.1, 1: v5.0

TLS Connection
Connect to the broker using TLS on port
8883.
Available on ObSys platform only

TLS Obj\NoYes; Adjustable

Prefix ‘name’
Specify a device identifier to prefix the
JSON ‘name’ key

PN Obj\Text; Adjustable

Authentication Method
Available on ObSys platform only

AM Obj\Enum; Adjustable
0: Basic, 1: Azure SAS token

Legacy Mode
Send messages using for format of MQTT
v1.0 driver

LM Obj\OffOn; Adjustable

The MQTT Driver 16

Appendix A: Example MQTT Brokers
Several MQTT brokers are available. The following public brokers are useful for testing your IoT
application.

Links last checked in 2024.

HiveMQ
HiveMQ is an enterprise MQTT broker, available both cloud hosted and on-premises.

Website: www.mqtt-dashboard.com or www.hivemq.com/mqtt/public-mqtt-broker

 To configure the MQTT driver for HiveMQ, follow these steps:

 Navigate to MQTT Setup, MQTT Broker and set Host name to ‘hivemq’. This will auto-configure
the driver to connect to broker.hivemq.com

 Next, in a web browser, navigate to the websocket client on the HiveMQ website

 Using the default connection settings, click connect. Once connected, click Add New Topic
Subscription, and set Topic to ‘North_MQTT/#’ and click Subscribe

The ‘#’ is a wildcard, and you should now see all messages with the topic name starting
‘North_MQTT/’

 Update a value in Essential Data, and this should be sent to the broker.

Azure IoT Hub
Available on ObSys platform only.

Azure IoT Hub is part of the Microsoft Azure cloud hosted platform.

IoT Hub supports a limited feature MQTT connection.

 To configure the MQTT driver for Azure IoT Hub, follow these steps:

 From Microsoft Azure, create an IoT Hub resource then add a device

 Copy the Primary connection string for the device on Azure

 Navigate to MQTT Setup, MQTT Broker and edit Host name. Paste the Primary connection string
to auto-configure the driver to connect to Azure IoT Hub. Alternatively, set Host name to ‘iothub’
and complete the information manually

 To monitor publish messages, download the Azure IoT Explorer, add the IoT Hub, then monitor the
device’s Telemetry data

 Update a value in Essential Data, and this should be sent to the broker.

https://www.mqtt-dashboard.com/
https://www.hivemq.com/mqtt/public-mqtt-broker/
http://www.hivemq.com/demos/websocket-client/

The MQTT Driver 17

Driver Versions
Version Build Date Details
1.0 9/08/2016 Driver released
2.0 08/01/2024 Added support for MQTT version 5.

Removed support for QoS level 2.
Removed ALARM object.
JSON payload, objects renamed (‘updated’, ‘label’, ‘isUnreliable’, ‘isOutRange’)
Added support for SUBSCRIBE
Added TLS support for ObSys platforms only

This document is subject to change without notice and does not
represent any commitment by North Building Technologies Ltd.

ObSys and Commander are trademarks of North Building
Technologies Ltd. All other trademarks are property of their respective
owners.

© Copyright 2024 North Building Technologies Limited.

Author: JF
Checked by: AB

Document issued 10/01/2024.

Next Steps…
If you require help, contact support on 01273 694422 or visit www.northbt.com/support

North Building Technologies Ltd
+44 (0) 1273 694422
support@northbt.com
www.northbt.com

http://www.northbt.com/support

	Purpose of MQTT Driver
	Values
	Prerequisites

	Detailed Operation
	MQTT Broker
	Topic Name
	Security
	Publish Message
	Message Content
	Properties
	Example

	Subscribe Message
	Message Content
	Properties
	Example

	Publish Message (Data Manager)
	Message Content
	Properties
	Example

	Using the Driver
	Starting the Interface
	Setting up the Driver
	Checking Communications

	Object Specifications
	Device Top-Level Objects
	MQTT Setup
	Object Type: [OSM v20\MQTT v20]
	Object Type: [CDM v20\MQTT v20]

	MQTT Broker
	Object Type: [OSM v20\MQTT v20\Broker]
	Object Type: [CDM v20\MQTT v20\Broker]

	Database
	Object Type: [OSM v20\MQTT v20\Data]
	Object Type: [CDM v20\MQTT v20\Data]

	Filter by Page
	Object Type: [OSM v20\MQTT v20\Filter]
	Object Type: [CDM v20\MQTT v20\Filter]

	Database Privilege Levels
	Object Type: [CDM v20\MQTT v20\Security]
	Object Type: [OSM v20\MQTT v20\Security]
	Security Areas and Levels
	Specifying Access Security
	MQTT Driver

	Publish/Subscribe
	Object Type: [OSM v20\MQTT v20\Publish]
	Object Type: [CDM v20\MQTT v20\Publish]

	Advanced Settings
	Object Type: [OSM v20\MQTT v20\Advanced]
	Object Type: [CDM v20\MQTT v20\Advanced]

	Appendix A: Example MQTT Brokers
	HiveMQ
	Azure IoT Hub

	Driver Versions

