

The Modbus Driver
The Modbus driver allows North to interface with a wide range of equipment supporting the
Modbus protocol, both over TCP/IP and serial connections. As a client, the driver can request
values from Modbus devices and, as a server, provide values from Essential Data to Modbus
clients. Available for Commander and ObSys.

This document relates to Modbus driver version 3.1

Please read the Commander Manual or ObSys Manual alongside this document, available from
www.northbt.com

http://www.northbt.com/

The Modbus Driver 2

Contents

Compatibility with the Modbus System ... 3
Equipment .. 3
Values .. 4
Prerequisites ... 5

Using the Driver .. 6
Starting the Interface .. 6
Making the Cable .. 6
Setting up the Driver ... 6
Checking Communications .. 7

Operation as a Modbus Client .. 8
Data Model .. 8
Supported Function Codes... 8
Value Decoding ... 9

Operation as a Modbus Server ... 13
Essential Data Value Translation .. 13
Supported Function Codes... 14
Exporting the Modbus Register List ... 14

Object Specifications .. 15
Example Object Reference ... 15
Device Top-Level Objects ... 15
Modbus Setup ... 16
Modbus TCP Client Setup ... 17
TCP Unit .. 17
Modbus TCP Server Setup .. 18
Network ... 19
Network Interface ... 19
Modbus Serial Setup ... 20
Modbus Serial Client Setup .. 21
Serial Unit.. 21
Modbus Serial Server Setup ... 22
Security ... 23
Register List ... 24
Register ... 24
Advanced Settings .. 25
Formula Setup .. 26
Modbus System... 27
Default Modbus Device ... 28

Appendix A: Modbus Integration Summary ... 34
Modbus over TCP/IP ... 34
Modbus over Serial-line .. 34
Function Codes ... 34
Register Address ... 34
Register Value ... 35
Checking Values .. 35

Driver Versions .. 36

The Modbus Driver 3

Router/Switch

Compatibility with the Modbus System
The Modbus driver allows North to interface with a wide range of equipment supporting the Modbus over
TCP/IP, Modbus over serial-line, and JBus protocols. The driver can both request values from Modbus
devices, and provide values to a Modbus front-end when requested.

Modbus uses a client-server model. As a client, the driver is capable of both requesting values from
Modbus units (i.e. power meters, controllers, etc.), and as a server, providing values from the Essential
Data and Extra Data within the North device when requested by a Modbus client (i.e. display or front-
end).

The driver connects to an IP network, and can access up to 30 Modbus TCP/IP units on the network (Fig.
1). The driver is also capable of being accessed by two TCP/IP client devices simultaneously.

The driver also connects using the North device’s serial port, typically via an RS485 converter, to Modbus
over serial-line equipment (Fig. 1). In client mode, a network of Modbus units can be accessed (see
Prerequisites: Driver as Modbus Serial Client for limitations). In server mode, the driver is capable of being
accessed by a single client/master device.

The JBus protocol is fully compatible with Modbus over serial-line.

Equipment
Many different types of Modbus equipment are compatible with the driver, including:

• Energy meters
• Generators
• Variable speed drives
• PLCs
• AHUs
• Control systems

Equipment is available from many different manufacturers, including ABB, Autometers, Carel, Carlo
Gavazzi, Carrier, Ciat, Daikin, Danfoss, Mitsubishi, Schneider, Siemens, Socomec, Stulz, Swegon, Tyco,
plus many more.

Application Notes are available for some of these devices, search North product documentation.

Fig. 1 North to Modbus

IP network

North device

Modbus IP
devices

IP network

RS232
 RS232 to RS485

converter

Modbus Serial
Devices

Modbus RS485
network

The Modbus Driver 4

Values
The Modbus driver can act as a Modbus client, reading and writing values from a Modbus device
elsewhere on the Modbus network. The driver can also act as a Modbus server, allowing other Modbus
clients to read and write values within the Essential Data.

Driver as Modbus Client

Depending on the type of Modbus equipment, each Modbus device can have the following primary value
types available:

• Coils – digital output, e.g. enable command
• Discrete Inputs – digital input, e.g. off/on, or alarm states
• Holding registers – analogue output, e.g. setpoint values
• Input registers – analogue input, e.g. meter readings

Read the Modbus register list, available from the equipment manufacturer, for the values available from
a specific device.

Driver as Modbus Server

The driver presents values from the Essential Data and Extra Data as Modbus values, accessible to any
client device on the Modbus network. Essential Data contains 640 values on Commander, and 1280
values on ObSys. If necessary, start the Extra Data driver (which requires an interface licence) for an
additional 1024 values. Access to these values can be controlled by configuring privilege levels within the
driver.

The Modbus Driver 5

Prerequisites
If an Application Note is not available for your Modbus unit, you will need a Modbus register list from the
equipment manufacturer. This should describe the function codes or commands supported, register
addresses available, and how register values are stored (16-bit integer, 32-bit integer, IEEE float,
multipliers, etc.)

Driver as Modbus TCP Client

All Modbus devices must be configured with a unique IP address on the TCP/IP network. If the TCP port
can be configured, then this should typically be set to 502. If you are connecting to Modbus over serial
devices via a gateway, each device must be assigned a unique serial address.

If you are connecting to the Modbus IP network via a firewall, then the driver will require outbound
access to controllers on TCP port 502 (Port 502 is reserved by IANA for use by Modbus).

Driver as Modbus TCP Server

The driver will respond to requests from a Modbus client with a unit identifier of 255, 0, or 1.

Driver as Modbus Serial Client

We recommend installing only Modbus devices of the same type (manufacturer and model) on a network.
Different device types may be incompatible for the following reasons – baud rate, byte format, inter-
frame delay, and RS485 isolation.

All Modbus devices must be configured with a unique address on the network, and the following
common parameters: baud rate, byte format.

Modbus RTU operating mode is supported.

An RS232-485 adapter is required for RS485 devices. Set the baud rate and data bits to match the devices.

The RS485 standard allows at least 32 devices on a network. However, the maximum number depends on
the unit load of each device on the network – typically 64 devices with a 0.5 unit load, or 128 devices with
a 0.25 unit load. The Modbus standard and this driver support up to 247 addresses.

Driver as Modbus Serial Server

Configure the driver with a unique address on the Modbus network, and the following common
parameters: baud rate, byte format.

Modbus RTU operating mode is supported.

The Modbus Driver 6

Using the Driver
On ObSys and Commander, the Modbus driver is pre-installed. Using all of these North devices, you can
use the driver to create an interface to a Modbus system. Once started, you will need to set up the driver
before it can communicate with the Modbus system.

The Modbus driver uses zero licence units.

Starting the Interface
 To start an interface using the Modbus driver, follow these steps:

 Start Engineering your North device using ObSys

 Navigate to Configuration, Interfaces, and set an unused Interface to ‘Modbus’ to start the
particular interface

 Navigate to the top-level of your North device and re-scan it

The driver setup object (Mc), labelled Modbus Setup, should now be available.

Making the Cable

RS485 Devices

Connect the North device COM port to an RS232 to RS485 adapter.

Using the RS485 cable specification (Fig. 2), connect the RS485 adapter to the Modbus device network.

RS485 adapters are available from North, order code MISC/RS232/485. This adaptor has a unit load of 1.

RS232 Devices

Connect the North device COM port to the Modbus device.

The cable specification will change for each type of Modbus device. Read the Application Note or
manufacturer’s documentation on your specific model for more information.

The maximum RS232 cable length is 15m and should be as short possible.

Setting up the Driver
 To set up the driver, follow these steps:

 Navigate to the Modbus Setup object (Mc). For example, if you started interface 1 with the driver
earlier, then the object reference will be ‘M1’

 Navigate to Modbus TCP Client Setup, TCP Unit 1 and set the Label and IP Address of a Modbus
TCP unit that you wish to access values within. If the device is connected via a Modbus gateway,
then set the Serial Address

 Follow additional steps on the Application Note, if available for the device

 Repeat for each Modbus TCP unit that your wish to access

RS485 Adapter
terminal block

Modbus device
terminal block

+ +
- -

0V

Fig. 2 RS485 adapter to Modbus cable

The Modbus Driver 7

 Navigate to Modbus Serial Setup and set the RS232 Com Port to the port number of the North
device you are connecting to Modbus

 Set Modbus Serial Mode to ‘Client’ or ‘Server’ operation

 Set Baud Rate to match the Modbus devices, typically 9600, 19200 or 38400 baud

 Set the Byte Format to the parity and stop bits configured in the Modbus devices

 If ‘Client’ mode is enabled, navigate to Serial Client Setup and follow additional steps on the
Application Note, if available for the device

 If ‘Server’ mode is enabled, navigate to Serial Server Setup and set the Address on Modbus
network to a unique address on the network.

Checking Communications
To check Modbus client operation, scanning the Modbus System will first respond with all units
configured with an IP address in Modbus TCP Client Setup, and then automatically detect any Modbus
serial units connected. You can check a unit is communicating by and viewing values within it.

To check Modbus server operation, navigate to Modbus TCP Server Setup then Network to view
interfaces open on the North device and their IP address.

The Modbus Driver 8

Operation as a Modbus Client

Data Model
A Modbus server device stores data using four primary tables, which can each be accessed by the driver.

Table Data type Adjustable Used for
Coils 1-bit data values Read-Write Digital outputs
Discrete Inputs 1-bit data values Read-only Digital inputs
Holding Registers 16-bit data values Read-Write Analogue outputs: setpoints, calculated values
Input Registers 16-bit data values Read-only Analogue inputs: sensor readings, meter values

Each table can contain up to 65536 entries, addressed in the range 0 to 65535 (Fig. 3).

Implementations of the Modbus protocol in a device can vary:

• It is common that these four tables may overlap in a device, so a single address range is used
• Distinctions between inputs and outputs, or 1-bit and 16-bit data values may be blurred
• Multiple consecutive table entries are combined to store a larger data value, e.g. 32-bit or 64-bit

data values
• Register addresses are often documented in the range 1 to 65536. To rescale these in the 0 to

65535 range of the Modbus protocol, you will need to subtract 1. E.g. Register 100 becomes 99.

Supported Function Codes
A client can read and write values in the tables using different Modbus function codes. A particular server
device may only support some of these codes. The driver function is used as part of the object reference
described later.

Function
Code (read)

Function
Code (write)

Action Driver Function

01 05 Read/Write Coil C
01 15 Read/Write Coil U
02 Read Discrete Input A
03 06 Read/Write single Holding Register D
03 16 Read/Write multiple Holding Registers E to L
04 Read single Input Register B
04 Read multiple Input Registers M to T

Coils

0
1
..

65535

Discrete Inputs

0
1
..

65535

Holding Registers

0
1
..

65535

Input Registers

0
1
..

65535

Fig. 3 Modbus device data access

The Modbus Driver 9

Value Decoding
The Modbus protocol only describes storing values as either a 1-bit digital or 16-bit register value. All
implementations of Modbus have variations from this, including:

• 32-bit and 64-bit integer values (including LSW-MSW order)
• IEEE floating point values (including LSW-MSW order)
• Bit array in register
• Multipliers to change register data from integer
• ASCII string
• Byte-order changed

The driver has several decode types available that are used to translate a raw Modbus register, from a
controller, into a value. The decode is used as part of the object reference described later.

Digital State (Decode A)

The value stored within a discrete input or coil entry is always 0 or 1, and always decodes to 0 or 1.

Unsigned Integer (Decode B and 0)

The value stored within the register entry decodes to an unsigned number. For a single register, this will
be in the range 0 to 65535.

Either one, two, or four registers can be decoded to a 16-bit, 32-bit, or 64-bit value respectively. In multi-
register values, decode B assumes MSW in the first register, and decode O assumes LSW in the first
register.

Examples
The single register value of 0x4849 (hex) will decode to 18505 (decimal). The multi-register values of
0x0012 and 0x3456 will decode to 1193046.

Signed Integer (Decode C and P)

The value stored within a register entry decodes to a signed integer number. For a single register, this will
be in the range -32768 to 32767.

Either one, two, or four registers can be decoded to a 16-bit, 32-bit, or 64-bit value respectively. In multi-
register values, decode C assumes MSW in the first register, and decode P assumes LSW in the first
register

Examples
The single register value of 0x4849 (hex) decodes to 18505 (decimal), and the single register value of
0xB7B7 decodes to -18505.

BCD in Lower Nibbles (Decode D)

The value stored within the lower nibbles of the register(s) decodes to a binary decoded decimal value.

One, two, three, or four register values can be decoded.

Example
The two lower nibbles of a single register decodes as Sum(V): 80+8+1 = 89

 Unused nibble Lower nibble Unused nibble Lower nibble
Bit value (V) 80 40 20 10 8 4 2 1
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

The Modbus Driver 10

BCD in Register (Decode E)

The value stored within the register(s) decodes to a binary coded decimal value.

One, two, three, or four register values can be decoded.

Example
A single register value of 0x4849 (hex) decodes as Sum(V): 4000+800+40+8+1 = 4849

Bit value (V) 8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

ASCII value in LSB (Decode F)

The value stored within the least significant byte of the register(s) decodes to a single ASCII character. Up
to 16 registers can be accessed at once, i.e. 16 characters.

Example
The LSB of a single register decodes as a single character: 64+8+1 = ASCII code 73 = ‘I’

 ASCII character
Bit value 128 64 32 16 8 4 2 1
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

ASCII String (Decode G)

The value stored within each register decodes to two ASCII characters. Up to 16 registers can be accessed
at once, i.e. 32 characters.

Example
A single register decodes as two characters: 64+8 = ASCII code 72, and 64+8+1 = ASCII code 73. The full
string is ‘HI’.

 First ASCII character Second ASCII character
Bit value 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

Unsigned Integer in LSB (Decode H)

The value stored within the least significant byte (LSB) of a single register decodes to an unsigned
number, a byte in the range 0 to 255. When writing, the register is first read to preserve the MSB.

Example
The LSB of a single register decodes as Sum(V): 64+8+1 = 73

 Unused MSB LSB
Bit value (V) 128 64 32 16 8 4 2 1
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

Unsigned Integer in MSB (Decode I)

The value stored within the most significant byte (MSB) of a single register decodes to an unsigned
number, a byte in the range 0 to 255. When writing, the register is first read to preserve the LSB.

Example
The MSB of a single register decodes using Sum(V): 64+8 = 72

 MSB Unused LSB
Bit value (V) 128 64 32 16 8 4 2 1
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

The Modbus Driver 11

IEEE Float (Decode J and M)

The value stored within two registers decodes to an IEEE floating-point number. A four register value can
be decoded to a double-precision floating-point number.

Use decode type J for big-endian values (MSW in first register and LSW in second), or decode type M for
little-endian values (LSW in first register and MSW in second).

Decode type J can also decode a single register as a half-precision floating-point number.

Single Bit of Register (Decode K)

Returns the specified bit from a register value. Bits are indexed starting with the most significant byte
(MSB) of the first register. This is shown below as bit index 7 to 0 (MSB), followed by 15 to 8 (LSB). Note
how this differs from the traditional bit numbering of a 16-bit value (shown 15 to 0 below the register
value).

 MSB LSB
Bit index (K) 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
Register value
Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Multiple register values are supported. When writing, the register is first read to preserve remaining bits.

Example
If a register has the value 0x4849 (hex). Bit indexes 8, 11, 14, 3, and 6 have the value 1. All other bits have
the value 0.

Bit index 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

Bit Mask (Decode L)

Performs a bitwise AND operation on a register value and mask value. The result indicates which bits of
the mask value are also set in the register value.

Example
If a register has the value 18505 (decimal). To find the value of bits 3 to 6, we first calculate the mask
value: Sum(V) = 64+32+16+8 = 120. So, Register AND Mask = 18505 AND 120 = 72.

Bit values (V) 32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1
Mask value 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

Bit Mask with Bit Shift (Decode N)

Performs a bitwise AND operation on a register value and mask value, followed by a bit-shifting operation
to move all bits to the right by the specified number.

Example
If a register holds a value in bits 3 to 6. First extract this value using the AND Mask value 120 (64+32+16+8
= 120). Then bit shift this value 3 positions to the right (rescaling the value to base 0).

If a register has the value 18505 (decimal): 18505 AND 120 = 72 >> 3 = 9

Bit values 32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
Mask value 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
Register value 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1
Bit shift result 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

The Modbus Driver 12

Single Register of Multi-Register (Decode R)

Returns the specified register index of a multi-register value.

The value stored within the single register entry decodes to an unsigned number, in the range 0 to 65535.

The multi-register value is temporarily cached by the driver, so that on decoding a different register index
it uses the same multi-register value. The life of the cache can be adjusted using the Cache Life driver
object (A.TC).

Examples
The two register value of 0x0012 and 0x3456, will decode to 0x0012 when requesting register index 1, and
0x3456 when requesting register index 2.

The Modbus Driver 13

Operation as a Modbus Server
The values from Essential Data may be accessed using any of the supported Modbus function codes. A
single address range is used for all functions – 0…639 on Commander, and 0…1279 on ObSys.

Both the Modbus TCP Server Setup and Serial Server Setup objects contain a Register List (RL) object
detailing the registers available from the North device. See below on how to export this Modbus register
address mapping list for a third-party.

If ExtraData is used, the extra 1024 values appear in registers that follow on from the existing Essential
Value registers – i.e. Registers 640…1663 on Commander, or 1280…2303 on ObSys.

Essential Data Value Translation
The North device has only one data table – Essential Data – and so maps all Modbus table requests to
Essential Data. The Essential Data value is translated to a Modbus register or state depending which
Modbus Table is specified and how the value is configured in Essential Data:

 Essential Data Type
Modbus Table Number Float NoYes or OffOn ENum

Input Register
Holding Register

16-bit unsigned
register value in the
range 0…65535.

16-bit signed value in
the
range -32768…32767

Value scaled 10dp
(dp is the number of
decimal places
configured in
Essential Data)

‘No’ and ‘Off’ states
are converted to the
value 0

‘Yes’ and ‘On’ states
are converted to the
value 1

16-bit unsigned
register value in the
range 0…1.

16-bit unsigned
register value in the
range 0…65535

Discrete Input
Coil

Binary on/off state.
If the value is zero (0) then an ‘off’ state is returned, any other value returns an ‘on’ state

When reading, if the Essential Data object has an Access Security level that does not allow Modbus access
to it (see Security), a ‘0’ value is returned. When writing, single value writes (Function Codes 05 and 06)
will have an error message returned; multi-value writes (Function Codes 15 and 16) will not.

If the Essential Data object has Adjustable set to ‘No’, and the incoming message attempts to write to it,
the write does not occur: single value writes (Function Codes 05 and 06) will be returned an error
message, multi-value writes (Function Codes 15 and 16) will not.

The Modbus Driver 14

Supported Function Codes
The driver supports the following Function Codes. Some Modbus messages can contain a quantity of
items, and the table shows the range of quantities supported by the driver for the various codes:

Function Code Action Quantity
01 Read Coils 1 to 255
02 Read Discrete Inputs 1 to 255
03 Read Holding Registers 1 to 125
04 Read Input Registers 1 to 125
05 Write Single Coil n/a
06 Write Single Holding Register n/a
15 Write Multiple Coils 1 to 255
16 Write Multiple Holding Registers 1 to 123

Exporting the Modbus Register List
Both the Modbus TCP Server Setup and Serial Server Setup objects contain the same Register List (RL)
object detailing the registers available from the North device.

 To export the North device’s Modbus register list, follow these steps:

 Navigate to the Modbus Setup object (Mc). For example, if you started interface 1 with the driver
earlier, then the object reference will be ‘M1’

 Navigate to Modbus TCP Server Setup, Register List

 From the menu, select Extras, Export to CSV…

The Modbus Driver 15

Object Specifications
Once an interface is started, one or more extra objects become available within the top-level object of
the device. As with all North objects, each of these extra objects may contain sub-objects, (and each of
these may contain sub-objects, and so on) – the whole object structure being a multi-layer hierarchy. It is
possible to navigate around the objects using the ObSys Engineering Software.

Each object is specified below, along with its sub-objects.

Example Object Reference
An example of a reference to an object in the same device: the Modbus System (S1) contains a Unit (U1),
which contains an Input register (B2.B). Therefore, the object reference will be ‘S1.U1.B2.B’.

An example of a reference to an object in a different device: the IP network object (IP) contains Default
Commander object (CDIP), which contains the object above (S1.U1.B2.B) – therefore the complete object
reference is ‘IP.CDIP.S1.U1.B2.B’.

Device Top-Level Objects
When an interface is started using the Modbus driver, the objects below become available within the top-
level object of the device. For example, if Interface 1 is started, then the object with references ‘M1’ and
‘S1’ become available.

Description Reference Type
Modbus Setup
Set up the Modbus driver, started on
interface c (c is the interface number)

Mc Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31]
On the ObSys platform this will be
[OSM v20\Modbus v31]

Modbus System
Access Modbus systems connected to
interface c (c is the interface number)

Sc Variable Container:
[Modbus]

The Modbus Driver 16

Modbus Setup
Object Type: [OSM v20\Modbus v31]
Object Type: [CDM v20\Modbus v31]
Object Type: [OSM v20\Modbus v30]
Object Type: [CDM v20\Modbus v30]

The Modbus Setup Module contains the following objects:

Description Reference Type
System Label
Label displayed when scanning the system

DL Obj\Text: 20 chars max; Adjustable

Modbus TCP Client Setup
Enable and configure Modbus TCP client
operation

TC Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Client]
On the ObSys platform this will be
[OSM v20\Modbus v31\Client]

Modbus TCP Server Setup
Enable and configure Modbus TCP server
operation

TS Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Server]
On the ObSys platform this will be
[OSM v20\Modbus v31\Server]

Modbus Serial Setup
Enable and configure Modbus serial client
or server operation

RS Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Serial]
On the ObSys platform this will be
[OSM v20\Modbus v31\Serial]

Advanced Settings
Set advanced parameters for Modbus
operation

A Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Advanced]
On the ObSys platform this will be
[OSM v20\Modbus v31\Advanced]

The Modbus Driver 17

Modbus TCP Client Setup
Object Type: [OSM v20\Modbus v31\Client]
Object Type: [CDM v20\Modbus v31\Client]
Object Type: [OSM v20\Modbus v30\Client]
Object Type: [CDM v20\Modbus v30\Client]

The Modbus TCP Client Setup object is used to enable client operation in the driver, and add the details
of Modbus TCP devices available on the IP network.

Description Reference Type
Enable TCP Client E Obj\NoYes; Adjustable
TCP Unit x
Configure Modbus TCP client device
address.
Unit number, x, is in the range 1…30

Ux Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Client\Unit]
On the ObSys platform this will be
[OSM v20\Modbus v31\Client\Unit]

TCP Unit
Object Type: [OSM v20\Modbus v31\Client\Unit]
Object Type: [CDM v20\Modbus v31\Client\Unit]
Object Type: [OSM v20\Modbus v30\Client\Unit]
Object Type: [CDM v20\Modbus v30\Client\Unit]

The TCP Unit object is used to configure the address of a Modbus TCP device on the network.

Description Reference Type
Label
Label displayed when scanning the
Modbus system

L Obj\Text: 20 chars; Adjustable

IP Address IA Obj\IP; Adjustable
TCP Port PN Obj\Num: 1…65535; Adjustable

Default: 502
Serial Address
If connecting to a single Modbus TCP
device, set to the address 255. If
connecting via a Modbus gateway, set to
the Modbus over serial device address.

A Obj\Num: 1…255; Adjustable
Value 255: Modbus TCP device (default)
Value 1…247: Modbus serial address

Device Type
Leave blank to view default Modbus
objects for a device. Refer to Application
Note for other types available

DT Obj\Text: 20 chars; Adjustable

The Modbus Driver 18

Modbus TCP Server Setup
Object Type: [OSM v20\Modbus v31\Server]
Object Type: [CDM v20\Modbus v31\Server]
Object Type: [OSM v20\Modbus v30\Server]
Object Type: [CDM v20\Modbus v30\Server]

The Modbus TCP Server Setup object is used to enable server operation in the driver, and select which
network interface the protocol is accessible on.

Description Reference Type
Enable TCP Server E Obj\NoYes; Adjustable
Network
Configure the local IP address and TCP
port for Modbus

N Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Network]
On the ObSys platform this will be
[OSM v20\Modbus v31\Network]

Security
Configure privilege levels to control read
and adjust access to Essential Data and
Extra Data from a Modbus TCP client

S Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Privs]
On the ObSys platform this will be
[OSM v20\Modbus v31\Privs]

Register List
List of registers made available from
Essential Data to a connected Modbus TCP
client. Useful for documentation.

RL Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\RegList]
On the ObSys platform this will be
[OSM v20\Modbus v31\RegList]

The Modbus Driver 19

Network
Object Type: [OSM v20\Modbus v31\Network]
Object Type: [CDM v20\Modbus v31\Network]
Object Type: [OSM v20\Modbus v30\Network]
Object Type: [CDM v20\Modbus v30\Network]

Configure the Modbus Network connectivity using this object. By default, all available IP addresses are
opened for requests on TCP port 502.

If required, change the TCP port number or restrict access to a single IP address on the North device.

Description Reference Type
Interfaces open
Reports the number of interfaces Modbus
is available on

C Obj\Num: 0…8

Force single IP address
Force the driver to use only one of the
interface IP addresses. By default, all are
used when the address is ‘0.0.0.0’

IA Obj\IP; Adjustable

TCP Port
TCP port number

PN Obj\Num: 1…65535; Adjustable
Default 502

Interface x
Status information for a network interface
available on the North device.
The interface number, x, is in the range
1…4 on Commander and 1…8 on ObSys

Ix Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Network\Interface]
On the ObSys platform this will be
[OSM v20\Modbus v31\Network\Interface]

Network Interface
Object Type: [OSM v20\Modbus v31\Network\Interface]
Object Type: [CDM v20\Modbus v31\Network\Interface]
Object Type: [OSM v20\Modbus v30\Network\Interface]
Object Type: [CDM v20\Modbus v30\Network\Interface]

An Interface represents a physical or virtual network interface on the North device. Use this object to find
out the IP address available and if Modbus TCP has opened a port to listen for requests.

Description Reference Type
IP address
IP address available for the interface

IA Obj\IP

Port open
Indicates if Modbus has opened a port on
the interface

S Obj\NoYes

The Modbus Driver 20

Modbus Serial Setup
Object Type: [OSM v20\Modbus v31\Serial]
Object Type: [CDM v20\Modbus v31\Serial]
Object Type: [OSM v20\Modbus v30\Serial]
Object Type: [CDM v20\Modbus v30\Serial]

The Modbus Serial Setup object is used to select client or server operation in the driver, and configure the
serial port.

Description Reference Type
Modbus Serial Mode
Select operating mode for driver on the
serial interface.
Select ‘Client’ to request values from other
Modbus devices.
Select ‘Server’ if a Modbus master/client
will request values from the North device

M Obj\ENum; Adjustable
Values: 0=None, 1=Client, 2=Server

RS232 COM Port COM Obj\Num: 1…8; Adjustable
Baud Rate

BR Obj\Num; Adjustable; Default: 19200
Range: 1200, 2400, 4800, 9600, 19200 or 38400

Byte Format
Set the parity and stop bits

BF Obj\ENum: 0…9; Adjustable; Default: 8 (Even/1)
See note 1

Serial Client Setup
Configure Modbus serial client operation

C Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Serial\Client]
On the ObSys platform this will be
[OSM v20\Modbus v31\Serial\Client]

Serial Server Setup
Configure Modbus serial server operation

S Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Serial\Server]
On the ObSys platform this will be
[OSM v20\Modbus v31\Serial\Server]

Notes
1 Modbus RTU uses 8 data bits. Byte format can have the following values:

Value Parity Stop
bits

Notes Data Format for
RS232-485 converter

0 None 1 2 stop bits are recommended
when using no parity

10-bits

1 None 2 11-bits
4 Odd 1 11-bits
5 Odd 2 12-bits
8 Even 1 Default value 11-bits
9 Even 2 12-bits

The Modbus Driver 21

Modbus Serial Client Setup
Object Type: [OSM v20\Modbus v31\Serial\Client]
Object Type: [CDM v20\Modbus v31\Serial\Client]
Object Type: [OSM v20\Modbus v30\Serial\Client]
Object Type: [CDM v20\Modbus v30\Serial\Client]

The Modbus Serial Client Setup object is used to optionally set a default device type and add details of
Modbus serial devices available on the RS485 network.

Description Reference Type
Serial Unit x
Configure Modbus client device address.
Unit number, x, is in the range 1…30

Ux Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Serial\Unit]
On the ObSys platform this will be
[OSM v20\Modbus v31\Serial\Unit]

Serial Unit
Object Type: [OSM v20\Modbus v31\Serial\Unit]
Object Type: [CDM v20\Modbus v31\Serial\Unit]
Object Type: [OSM v20\Modbus v30\Serial\Unit]
Object Type: [CDM v20\Modbus v30\Serial\Unit]

The Serial Unit object is used to optionally configure the address of a Modbus serial device on the
network.

Description Reference Type
Label
Label displayed when scanning the
Modbus system

L Obj\Text: 20 chars; Adjustable

Serial Address
Modbus over serial device address

A Obj\Num: 1…247; Adjustable

Device Type
Leave blank to view default Modbus
objects for a device. Refer to Application
Note for other types available

DT Obj\Text: 20 chars; Adjustable

The Modbus Driver 22

Modbus Serial Server Setup
Object Type: [OSM v20\Modbus v31\Serial\Server]
Object Type: [CDM v20\Modbus v31\Serial\Server]
Object Type: [OSM v20\Modbus v30\Serial\Server]
Object Type: [CDM v20\Modbus v30\Serial\Server]

The Modbus Serial Server Setup object is used to configure the address of the North device on the
Modbus serial network.

Description Reference Type
Address on Modbus network
Set to a unique address on the RS485
network

ADDR Obj\Num; 1…247; Adjustable

Security
Configure privilege levels to control read
and adjust access to Essential Data and
Extra Data from a Modbus serial client

S Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\Privs]
On the ObSys platform this will be
[OSM v20\Modbus v31\Privs]

Register List
List of registers made available from
Essential Data to a Modbus serial client.
Useful for documentation.

RL Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\RegList]
On the ObSys platform this will be
[OSM v20\Modbus v31\RegList]

The Modbus Driver 23

Security
Object Type: [OSM v20\Modbus v31\Privs]
Object Type: [CDM v20\Modbus v31\Privs]
Object Type: [OSM v20\Modbus v30\Privs]
Object Type: [CDM v20\Modbus v30\Privs]

Security Areas and Levels

Within the North security model, there are eight security areas. Security areas could be actual areas in a
building, but are normally functional areas – for example, ‘environmental control’ and ‘North
engineering’ areas would allow a user to have different privileges in controlling set points and
engineering Commanders.

Typically, a user is assigned a privilege level in each of the eight areas. The level is in the range zero to
seven, seven being the most powerful. When a user wishes to pass a door, his/her privilege level in the
door’s area is checked against the minimum required for that area – and then either allowed to pass, or
rejected.

The engineer must decide the use of the eight areas. The engineer must also decide the power of the
privilege levels. Most systems use only a few levels per area: 0=None, 1=Guest, 2=User, 7=Administrator.

As an example, imagine a page of values in Essential Data. The page needs a user to have a minimum
privilege level of 2 in area 1 before it can be viewed. The page is available in a Web browser that checks
users with a security database. User A has privilege level 7 in area 1 – she can view the page. User B has
privilege level 5 in area 1 – he can also view the page. User C has privilege level 1 in area 1 – she cannot
view the page.

The example continues: within this page of values in Essential Data is a temperature set point object.
Users need a minimum privilege level of 6 in area 1 to adjust it – therefore User A can adjust the set point,
but User B cannot.

Specifying Access Security

Essential Data and Extra Data have Access Security objects to control who can view a page, and who can
adjust an adjustable object.

Each Access Security object has a two-digit value. Each controls the access to a particular feature - such
as viewing the page or adjusting the value. The two-digit value is made up of the area digit (1-8), followed
by the minimum privilege level (1-7) – for example, if the minimum privilege level is 6 in area 2, then the
two-digit value is 26. If the value is 00, then no security checks are made.

Modbus Driver

The Security object contains a privilege level for each of the eight security areas, representing a virtual
user. The Modbus driver uses these to control access to Essential Data and Extra Data when reading or
adjusting a value.

Description Reference Type
Privilege Level in Area x
The area, x, can be in the range 1…8

Px Obj\Num; Adjustable; Range: 0…7

The Modbus Driver 24

Register List
Object Type: [CDM v20\Modbus v31\RegList]
Object Type: [OSM v20\Modbus v31\RegList]

The Register List object contains the list of available Modbus registers presented from the North device’s
Essential Data. This list is provided for documentation and fault-finding purposes.

Export the Register List to a CSV file using engineering software. Use this CSV to provide a list of
configured registers for third-party integration.

Description Reference Type
Registers Available
Count of maximum objects available from
Essential Data and Extra Data

EDC Obj\Num

Register x
The register address, x, can be in the range
0…639 on Commander, and 0…1279 on
ObSys. If Extra Data is used, the register
address range is extended to 1663 on
Commander, and 2303 on ObSys.

REGx Fixed Container:
On the Commander platform this will be
[CDM v20\Modbus v31\RegList\Addr]
On the ObSys platform this will be
[OSM v20\Modbus v31\RegList\Addr]

Register
Object Type: [CDM v20\Modbus v31\RegList\Addr]
Object Type: [OSM v20\Modbus v31\RegList\Addr]

A Register contains a single register address, documenting how the value from Essential Data is
presented as a Modbus register.

Description Reference Type
Label
Label from Essential Data

L Obj\Text

Format
Format of the register value

F Obj\Text
Values: Signed, Unsigned, n/a

Adjustable
Indicates if the register can be written to
using Modbus function codes 05 or 06

A Obj\NoYes

Register Value
Value converted to a 16-bit Modbus value

V Obj\Num: 0…65535

Note
Additional information about the register
value. This may contain the units, a list of
ENum values, or a decoded Float value

N Obj\Text

The Modbus Driver 25

Advanced Settings
Object Type: [OSM v20\Modbus v31\Advanced]
Object Type: [CDM v20\Modbus v31\Advanced]
Object Type: [OSM v20\Modbus v30\Advanced]
Object Type: [CDM v20\Modbus v30\Advanced]

The Advanced Settings object contains the following advanced configuration objects:

Description Reference Type
Maximum Requests
Maximum number of simultaneous
requests from the interface to connected
Modbus client devices

MR Obj\Num: 1…3; Adjustable
Default: 3

Reply Timeout (ms)
Maximum time to wait from sending a
request to receiving a reply from a Modbus
device

TO Obj\Num: 250…2000; Adjustable
Default: 2000ms

Inter-Frame Delay (ms)
On Modbus serial connections, time to
wait between message frames. As a
minimum, this value must be the time
taken to send 3.5 characters.

T3 Obj\Num: 5…1000; Adjustable
Default: 50ms

TCP Client Keep-Alive (s)
On TCP Client connections, the maximum
time between requests to keep the
connection established

KA Obj\Num: 10…1800; Adjustable
Default: 15s

Cache Life (s)
When decoding a single register of a multi-
register value (decode ‘R’), the driver
caches the multi-register value for Cache
Life (in seconds)

CL Obj\Num: 1…900; Adjustable
Default: 25s

Register Byte Order
The Modbus protocol uses a big-endian
byte order. For non-standard client
devices use this object to reverse the byte
order. Refer to Application Note or contact
support for help.
Server operation is always big-endian

BO Obj\ENum; Adjustable
Values: 0=Big-endian, 1=Little-endian
Default: big-endian

Formula y
User defined mathematical formula, used
in decoding values from device. The
formula number, y, is in the range 1…20

Fy Fixed Container:
[Standard\AMFormula]

Debug Enable
This will store additional debug
information in the record file. Use this
option only when instructed by North
Support

DE Obj\NoYes; Adjustable

The Modbus Driver 26

Formula Setup
Object Type: [Standard\AMFormula]

A standard formula setup is a maths module that allows values to be converted into engineering units.

This module allows a simple formula to be applied to a Modbus register value so that the resulting object
value contains a meaningful value.

The module can convert the number into an object value using the formula:
 real-value = (M x raw-value) + A

The formula values M and A are engineer-defined. When writing, the module applies the formula below:
 raw-value = (real-value – A) / M

Example
A register value contains a temperature value, where value 0 = -50°C and value 65535 = +50°C.

If A is set to -50 and M=0.0015259, then the formula would be:
 temperature = (0.0015259 x register-value) + -50

So, the following temperatures can be calculated from the register values:

Register value Temperature
0 -50°C
32767 0°C
49150 25°C
65535 50°C

The module contains the following objects:

Description Reference Type
Addition value A Obj\Float; Adjustable
Multiplication value M Obj\Float; Adjustable

The Modbus Driver 27

Modbus System
Object Type: [Modbus]

The Modbus system contains objects to access the Modbus client devices available.

Description Reference Type
Unit x
The unit address, x, can be in the range
1…30.

Ux Fixed container, one of the following:
Default Modbus Device
[Modbus\Default]
If Device Type is configured then the container will be
of the type [Modbus\Device Type]. See Modbus TCP
Client Setup

Serial Address y
The serial address, y, can be in the range
1…247.

Ay Fixed container, one of the following:
Default Modbus Device
[Modbus\Default]
If Device Type is configured then the container will be
of the type [Modbus\Device Type]. See Modbus Serial
Client Setup

The Modbus Driver 28

Default Modbus Device
Object Type: [Modbus\Default]

A default Modbus device contains a generic list of objects that enable you to access the values in a device.
Use this with the device manufacturer’s register list. For a full description of Modbus values and how to
decode them, refer to Operation as a Modbus Client earlier in this document.

Frequently Used Objects

Here we list a summary of the most frequently used decode objects. Refer to the Notes section below for
additional information, and Full Object List below for the complete list of objects available.

Description Reference Type
Coil r – State
The digital output, r, is in the range
0…65535 (see note 1)

Cr.A Obj\OffOn; Adjustable

Discrete Input r – State
The digital input, r, is in the range
0…65535 (see note 1)

Ar.A Obj\OffOn

Holding Register r – Unsigned 16-bit
Integer
The register, r, is in the range 0…65535
(see note 1).

Dr.B Obj\Num; Range: 0…65535; Adjustable

Holding Register r – Unsigned 16-bit
(x10)

Dr.B26 Obj\Float; Range: 0…6553.5; Adjustable

Holding Register r – Unsigned 16-bit
(x100)

Dr.B27 Obj\Float; Range: 0…655.35; Adjustable

Holding Register r – Unsigned 16-bit
(x1000)

Dr.B28 Obj\Float; Range: 0…65.535; Adjustable

Holding Register r – Signed 16-bit
Integer

Dr.C Obj\Num; Range: -32768…32767; Adjustable

Holding Register r – Signed 16-bit (x10) Dr.C26 Obj\Float; Range: -3276.8…3276.7; Adjustable
Holding Register r – Signed 16-bit (x100) Dr.C27 Obj\Float; Range: -327.68…327.67; Adjustable
Holding Register r – Signed 16-bit
(x1000)

Dr.C28 Obj\Float; Range: -32.768…32.767; Adjustable

Holding Register r – IEEE Float
Single precision, stored in two registers
(MSW, LSW)

Fr.J Obj\Float; Adjustable

Holding Register r – Unsigned 32-bit
Integer
Stored in two registers (MSW,LSW) (see
note 2)

Fr.B Obj\Num; Range: 0…4294967295; Adjustable

Holding Register r – Signed 32-bit
Integer
Stored in two registers (MSW,LSW) (see
note 2)

Fr.C Obj\Num; Range: -2147483648…2147483647;
Adjustable

Holding Register r – Unsigned 64-bit
Integer
Stored in four registers (MSW…LSW) (see
note 2)

Hr.B Obj\Text; Range: 0…18446744073709551615;
Adjustable

Holding Register r – Signed 64-bit
Integer
Stored in four registers (see note 2)

Hr.C Obj\Text; Range: -923372036854775808…
923372036854775807; Adjustable

Holding Register r – IEEE Double Float
Double precision, stored in four registers
(MSW… LSW) (see note 2)

Hr.J Obj\Text; Adjustable

The Modbus Driver 29

Description Reference Type
Holding Register r – Bit b
The bit number, b, can be in the range
0…15. Refer to Single Bit of Register
section earlier in this manual

Dr.Kb Obj\OffOn; Adjustable

Input Register r – Unsigned 16-bit
Integer
The register, r, is in the range 0…65535
(see note 1)

Br.B Obj\Num; Range: 0…65535

Input Register r – Unsigned 16-bit (x10) Br.B26 Obj\Float: Range: 0…6553.5
Input Register r – Unsigned 16-bit (x100) Br.B27 Obj\Float; Range: 0…655.35
Input Register r – Unsigned 16-bit
(x1000)

Br.B28 Obj\Float; Range: 0…65.535

Input Register r – Signed 16-bit Integer Br.C Obj\Num; Range: -32768…32767
Input Register r – Signed 16-bit (x10) Br.C26 Obj\Float: Range: -3276.8…3276.7
Input Register r – Signed 16-bit (x100) Br.C27 Obj\Float: Range: -327.68…327.67
Input Register r – Signed 16-bit (x1000) Br.C28 Obj\Num; Range: -32.768…32.767
Input Register r – IEEE Float
Single precision, stored in two registers
(MSW,LSW)

Nr.J Obj\Float

Input Register r – Unsigned 32-bit
Integer
Stored in two registers (MSW,LSW) (see
note 2)

Nr.B Obj\Num; Range: 0…4294967295

Input Register r – Signed 32-bit Integer
Stored in two registers (MSW,LSW) (see
note 2)

Nr.C Obj\Num; Range: -2147483648…2147483647

Input Register r – Unsigned 64-bit
Integer
Stored in four registers (MSW…LSW) (see
note 2)

Pr.B Obj\Text; Range: 0…18446744073709551615

Input Register r – Signed 64-bit Integer
Stored in four registers (MSW…LSW) (see
note 2)

Pr.C Obj\Text; Range: -923372036854775808…
923372036854775807

Input Register r – IEEE Double Float
Double precision, stored in four registers
(MSW… LSW) (see note 2)

Pr.J Obj\Text

Input Register r - Bit b
The bit number, b, can be in the range
0…15. Refer to Single Bit of Register
section earlier in this manual

Br.Kb Obj\OffOn

Notes

1. The discrete input, coil, or register number, r, is in the range 0…65535. Manufacturers
sometimes document the register number in the range 1…65536. To rescale these in the 0 to
65535 range from the Modbus protocol, you will need to subtract 1. For example, register 100
becomes 99.

2. Large numbers: 64-bit and 32-bit values can contain up to 20 significant figures. Numbers this
size are ok for displaying to a user, but may be too large to perform accurate maths functions.
These values can be read in blocks of six significant figures by appending the object reference
with a block number. Block 1 reads the six least significant figures, block 2 the next six
significant figures, etc.
For example, if object ‘H1.B’ reads the 64-bit value ‘6744073709551615’, then object ‘H1.B.1’
will read the least six significant figures ‘551615’, object ‘H1.B.2’ the value ‘073709’, and
object ‘H1.B.3’ the value ‘6744’.

The Modbus Driver 30

You can also use a formula with a block number. The object has the format ‘H1.B28.1’. This
will apply the formula first then access the requested block of six significant figures.
If the formula uses a divisor, then the value will be formatted to three decimal places. For
example, object ‘H1.B28.1’ will read the value ‘551.615’.

The Modbus Driver 31

Full Object List

The Modbus driver contains the following objects:

Description Reference Type
Function f, Entry r – Decode d
The function, f, is in the range A…U (see
note 3)
The entry, r, is in the range 0…65535 (see
note 1)
The decode, d, is in the range A…J, L, or M,
or O…P (see also note 4). Refer to Value
Decoding earlier in this manual.
For 2 and 4 register values, see note 5.

Fr.d The value type is dependent on the function, f, and
decode, d.
Adjustable for Coils and Holding Registers

Function f, Entry r – Decode d, Formula z
As above, but with formula, z, applied (see
note 2)

fr.dz The value type is dependent on the function, f,
decode, d, and formula, z.
Adjustable for Coils and Holding Registers

Function f, Entry r – Bit b
Refer to Value Decoding: Single Bit of
Register earlier in this manual.
The function, f, is in the range D…L, B,
N…T (see note 3)
The entry, r, is in the range 0…65535 (see
note 1)
The bit number, b, can be in the range
0…15.

Fr.Kb Obj\OffOn; Adjustable for Holding Registers

Function f, Entry r – Bit Mask m
Refer to Value Decoding: Bit Mask earlier in
this manual.
The function, f, is in the range D…F, B, N
(see note 3)
The entry, r, is in the range 0…65535 (see
note 1)
The bit mask, m, is a number in the range
0…65535.

Fr.Lm Obj\Num

Function f, Entry r – Bit Mask m,
Formula z
As above, but with formula, z, applied (see
note 2)

fr.Lm.z Obj\Float

Function f, Entry r – Bit Mask m, Shift s
Refer to Value Decoding: Bit Mask with Bit
Shift earlier in this manual.
The function, f, is in the range D…F, B, N
(see note 3)
The entry, r, is in the range 0…65535 (see
note 1)
The bit mask, m, is a number in the range
0…65535.
The bit shift, s, is a number in the range
1…32.

Fr.Nm.s Obj\Num

Function f, Register r
Read a multi-register value, and decode a
single register as an unsigned integer.
Refer to Value Decoding: Single Register of
Multi-Register earlier in this manual.
The function, f, is in the range E…L, N…T
(see note 3)
The register index, r, is in the range 1…16.
Available in driver version 3.1 onwards.

Fr.R Obj\Num: 0…65535

The Modbus Driver 32

Notes

1. The discrete input, coil, or register number, r, is in the range 0…65535. Manufacturers
sometimes document the register number in the range 1…65536. To rescale these in the 0
to 65535 range from the Modbus protocol, you will need to subtract 1. E.g. Register 100
becomes 99.

2. An optional formula number, z, may be applied where indicated above. The formula
number is in the range 1…40, where 1…20 refer to user-defined formula, and 21…40 are
fixed as follows:

Formula Multiply Add Formula Multiply Add
21 10 0 31 2 0
22 100 0 32 5 0
23 1000 0 33 0.2 0
24 10000 0 34 0.5 0
25 100000 0 35 0.05 0
26 0.1 0 36 0.005 0
27 0.01 0 37 0.000001 0
28 0.001 0 38 1 0
29 0.0001 0 39 1 0
30 0.00001 0 40 Four quadrant power

factor (Float decode only)

3. The function, f, is the Modbus function or command and can be in the range A…U. Refer to
the Function Codes section earlier in this document.

Driver
Function

Table Action Function Code
(read)

Function Code
(write)

C Coils Read/Write digital output 01 05
A Discrete Inputs Read digital input 02
D Holding Registers Read/Write 1 output register 03 06
E Holding Registers Read/Write 1 output multi-registers 03 16
F Holding Registers Read/Write 2 output multi-registers 03 16
G Holding Registers Read/Write 3 output multi-registers 03 16
H Holding Registers Read/Write 4 output multi-registers 03 16
I Holding Registers Read/Write 6 output multi-registers 03 16
J Holding Registers Read/Write 8 output multi-registers 03 16
K Holding Registers Read/Write 10 output multi-registers 03 16
L Holding Registers Read/Write 16 output multi-registers 03 16
B Input Registers Read 1 input register 04
N Input Registers Read 2 input multi-registers 04
O Input Registers Read 3 input multi-registers 04
P Input Registers Read 4 input multi-registers 04
Q Input Registers Read 6 input multi-registers 04
R Input Registers Read 8 input multi-registers 04
S Input Registers Read 10 input multi-registers 04
T Input Registers Read 16 input multi-registers 04
U Coils Read/Write 1 digital output 01 15

The Modbus Driver 33

4. The decode, d, is in the range A…Q. Refer to the Value Decoding section earlier in this
document.

Decode Use Object Type
A Digital State Obj\OffOn
B Unsigned Integer Obj\Num
C Signed Integer Obj\Num
D BCD in lower nibbles only Obj\Num
E BCD in register Obj\Num
F ASCII in LSB Obj\Text
G ASCII string Obj\Text
H Unsigned Integer in LSB Obj\Num
I Unsigned Integer in MSB Obj\Num
J IEEE Float (MSW, LSW order) Obj\Float
M IEEE Float (LSW, MSW order) Obj\Float
K Single bit of register Obj\OffOn
L Bit Mask Obj\Num
N Bit Mask with Bit Shift Obj\Num
O Unsigned Integer (LSW, MSW order) Obj\Num
P Signed Integer (LSW, MSW order) Obj\Num
Q Special Decode – Ask North <various>
R Unsigned Integer in Single Register Obj\Num

5. Large numbers: 64-bit and 32-bit values can contain up to 20 significant figures. Numbers this
size are ok for displaying to a user but may be too large to perform accurate maths functions.
These values can be read in blocks of six significant figures by appending the object reference
with a block number. Block 1 reads the six least significant figures, block 2 the next six
significant figures, etc.
For example, if object ‘H1.B’ reads the 64-bit value ‘6744073709551615’, then object ‘H1.B.1’
will read the least six significant figures ‘551615’, object ‘H1.B.2’ the value ‘073709’, and
object ‘H1.B.3’ the value ‘6744’.
You can also use a formula with a block number. The object has the format ‘H1.B28.1’. This
will apply the formula first then access the requested block of six significant figures.
If the formula uses a divisor, then the value will be formatted to three decimal places. For
example, object ‘H1.B28.1’ will read the value ‘551.615’.

The Modbus Driver 34

Appendix A: Modbus Integration Summary
When the Modbus TCP Server is enabled, or Modbus Serial Mode is set to ‘Server’, the North device
presents values from its database, Essential Data, as Modbus values.

Modbus over TCP/IP
The default TCP port is 502. The North device will respond to requests with a Modbus unit identifier of
255, 0, or 1.

Modbus over Serial-line
The engineer configuring the North device can provide the Modbus address along with the baud rate,
data parity, and stop bits (default 9600, even parity, 1 stop bit).

Modbus RTU operating mode is supported.

Function Codes
The North device supports the following Modbus functions codes. Some Modbus messages can contain a
quantity of items, and the table shows the range of quantities supported for each function:

Function Code Action Quantity
01 Read Coils 1 to 255
02 Read Discrete Inputs 1 to 255
03 Read Holding Registers 1 to 125
04 Read Input Registers 1 to 125
05 Write Single Coil n/a
06 Write Single Holding Register n/a
15 Write Multiple Coils 1 to 255
16 Write Multiple Holding Registers 1 to 123

Register Address
The North device has only one data table – Essential Data – and so maps all Modbus requests to a single
register, input, or coil address range for all functions – 0…639 on Commander, and 0…1279 on ObSys.

This Modbus register address maps to an Essential Data page/object reference. For example, register 0
maps to the first object ‘P1.O1’, register 1 to ‘P1.O2’, etc. However, an easier way to see how register
addresses are used is to look at the exported Register List.

Register List

The engineer configuring the North device can export a Register List. This CSV file contains columns with
the following:

• Register address – ‘REG’ followed by decimal register address, starting at 0
• Label
• Format – format of value: Unsigned or Signed; N/A: not available via Modbus
• Adjustable – indicates if the register value can be written (e.g. holding register)
• Register Value – current value converted to a 16-bit Modbus register value
• Note – additional information: units, available values (enum), etc.

The Modbus Driver 35

Example exported register list:

Index Object Label Format Adjustable Register Value Note
1 REG0 Example - Counter Unsigned No 2025
2 REG1 Example - State Unsigned (enum) No 1 0=Off,1=On
3 REG2 Example - Temperature Signed x10 No 185 Value: 18.5 °C
4 REG3 Example - Humidity Unsigned No 58 %rh
5 REG4 Example - Setpoint Signed Yes 19 °C
6 REG5 Example - Fan Unsigned (enum) Yes 3 0=Off,1=Low,3=Auto
7 REG6 Example - not available N/A No 0

Register Value
A register value may be accessed using any of the supported Modbus function codes.

The Essential Data value is translated to a Modbus register or state depending which Modbus Table is
specified and the value format configured:

 Value Format
Modbus Table Unsigned Signed

Input Register,
Holding Register

16-bit unsigned register value in the range
0…65535.

16-bit signed value in the
range -32768…32767

The format field may indicate the value is
scaled, e.g. ‘Signed x 10’. In this case, the
register value should be converted to a
floating point number (by dividing by 10). The
note field includes a converted value.

Discrete Input,
Coil

Binary on/off state.
If the value is zero (0) then an ‘off’ state is returned, any other value returns an ‘on’ state

Checking Values
The North device has a local web-server, browse to the device’s IP address to view values.

The Modbus Driver 36

Driver Versions
Version Build Date Details
1.0 10/9/2012 Driver released (renamed from JBus).
1.0 29/8/2013 Change Modbus system scan to detect online devices.

Default baud rate to 9600 on initialisation
Address Start and Count now initialised

1.0 6/9/2013 Fixed problem with bit write
1.1 7/2/2014 Moved objects AC, AS, TXB and BO to advanced setup object (A)

Add Intelligent scan object to disable new scan method (A.IS)
Add exception device typelist (A.Ux.A, A.Ux.DT)
Default TXB to 10ms on initialisation

1.1 19/5/2014 On initialisation, default baud rate to 19200, and E81 byte format
2.0 8/2/2016 Added Reply Timeout object (TO) to advanced setup.

64-bit value support added
Decode types H & I, now read before writing value.
Added formulas 37 and 40
Added ability to read in blocks of 6 sig figs, for 32-bit and 64-bit values

2.0 18/6/2018 Fix reading 64-bit float values when 0 (previously returned blank)
2.0 17/8/2018 Added function code ‘U’ to support Modbus function code 15
3.0 2/12/2019 Combined existing Modbus, ModbusTCP, and ModbusSlave drivers in this new

version.
Added decode ‘N’ for bit mask with bit shift.

3.0 03/02/2020 Fix documentation of input/holding multi-register counts (5,6,7,8 should be
6,8,12,16)

3.0 01/06/2020 Added decode ‘O’ and ‘P’ for LSW,MSW order.
Added undocumented special decode mechanism ‘Q’
Changed multi-register count from 12 to 10 registers.
Resolved issue on rounding floating-point numbers when writing

3.0 16/11/2022 TCP server is no longer enabled by default
3.0 01/03/2023 Fix issue when decoding 4-register values (function ‘H’)
3.1 21/01/2025 Add decode ‘R’, decoding single register of a multi-register value.

Add Cache Life driver object. Used to cache a multi-register value with decode R.
Add TCP Client Keep-Alive driver object, previously fixed to 15s.
On Commander platform, add support for requests to client at loopback address
(127.0.0.1)
Modbus Server register value format changed for float (signed) and num
(unsigned). Previously the format varied between unsigned/signed based on a -ve
value.
Update Register List to improve CSV export and update Appendix A.
Fix issue with serial request/response mismatch on failed responses.

This document is subject to change without notice and does not
represent any commitment by North Building Technologies Ltd.

ObSys and Commander are trademarks of North Building
Technologies Ltd. All other trademarks are property of their respective
owners.

© Copyright 2025 North Building Technologies Limited.

Author: JF
Checked by: TM

Document issued 22/01/2025.

Next Steps…
If you require help, contact support on 01273 694422 or visit www.northbt.com/support

North Building Technologies Ltd
+44 (0) 1273 694422
support@northbt.com
www.northbt.com

http://www.northbt.com/support

	Compatibility with the Modbus System
	Equipment
	Values
	Driver as Modbus Client
	Driver as Modbus Server

	Prerequisites
	Driver as Modbus TCP Client
	Driver as Modbus TCP Server
	Driver as Modbus Serial Client
	Driver as Modbus Serial Server

	Using the Driver
	Starting the Interface
	Making the Cable
	RS485 Devices
	RS232 Devices

	Setting up the Driver
	Checking Communications

	Operation as a Modbus Client
	Data Model
	Supported Function Codes
	Value Decoding
	Digital State (Decode A)
	Unsigned Integer (Decode B and 0)
	Signed Integer (Decode C and P)
	BCD in Lower Nibbles (Decode D)
	BCD in Register (Decode E)
	ASCII value in LSB (Decode F)
	ASCII String (Decode G)
	Unsigned Integer in LSB (Decode H)
	Unsigned Integer in MSB (Decode I)
	IEEE Float (Decode J and M)
	Single Bit of Register (Decode K)
	Bit Mask (Decode L)
	Bit Mask with Bit Shift (Decode N)
	Single Register of Multi-Register (Decode R)

	Operation as a Modbus Server
	Essential Data Value Translation
	Supported Function Codes
	Exporting the Modbus Register List

	Object Specifications
	Example Object Reference
	Device Top-Level Objects
	Modbus Setup
	Object Type: [OSM v20\Modbus v31]
	Object Type: [CDM v20\Modbus v31]
	Object Type: [OSM v20\Modbus v30]
	Object Type: [CDM v20\Modbus v30]

	Modbus TCP Client Setup
	Object Type: [OSM v20\Modbus v31\Client]
	Object Type: [CDM v20\Modbus v31\Client]
	Object Type: [OSM v20\Modbus v30\Client]
	Object Type: [CDM v20\Modbus v30\Client]

	TCP Unit
	Object Type: [OSM v20\Modbus v31\Client\Unit]
	Object Type: [CDM v20\Modbus v31\Client\Unit]
	Object Type: [OSM v20\Modbus v30\Client\Unit]
	Object Type: [CDM v20\Modbus v30\Client\Unit]

	Modbus TCP Server Setup
	Object Type: [OSM v20\Modbus v31\Server]
	Object Type: [CDM v20\Modbus v31\Server]
	Object Type: [OSM v20\Modbus v30\Server]
	Object Type: [CDM v20\Modbus v30\Server]

	Network
	Object Type: [OSM v20\Modbus v31\Network]
	Object Type: [CDM v20\Modbus v31\Network]
	Object Type: [OSM v20\Modbus v30\Network]
	Object Type: [CDM v20\Modbus v30\Network]

	Network Interface
	Object Type: [OSM v20\Modbus v31\Network\Interface]
	Object Type: [CDM v20\Modbus v31\Network\Interface]
	Object Type: [OSM v20\Modbus v30\Network\Interface]
	Object Type: [CDM v20\Modbus v30\Network\Interface]

	Modbus Serial Setup
	Object Type: [OSM v20\Modbus v31\Serial]
	Object Type: [CDM v20\Modbus v31\Serial]
	Object Type: [OSM v20\Modbus v30\Serial]
	Object Type: [CDM v20\Modbus v30\Serial]
	Notes

	Modbus Serial Client Setup
	Object Type: [OSM v20\Modbus v31\Serial\Client]
	Object Type: [CDM v20\Modbus v31\Serial\Client]
	Object Type: [OSM v20\Modbus v30\Serial\Client]
	Object Type: [CDM v20\Modbus v30\Serial\Client]

	Serial Unit
	Object Type: [OSM v20\Modbus v31\Serial\Unit]
	Object Type: [CDM v20\Modbus v31\Serial\Unit]
	Object Type: [OSM v20\Modbus v30\Serial\Unit]
	Object Type: [CDM v20\Modbus v30\Serial\Unit]

	Modbus Serial Server Setup
	Object Type: [OSM v20\Modbus v31\Serial\Server]
	Object Type: [CDM v20\Modbus v31\Serial\Server]
	Object Type: [OSM v20\Modbus v30\Serial\Server]
	Object Type: [CDM v20\Modbus v30\Serial\Server]

	Security
	Object Type: [OSM v20\Modbus v31\Privs]
	Object Type: [CDM v20\Modbus v31\Privs]
	Object Type: [OSM v20\Modbus v30\Privs]
	Object Type: [CDM v20\Modbus v30\Privs]
	Security Areas and Levels
	Specifying Access Security
	Modbus Driver

	Register List
	Object Type: [CDM v20\Modbus v31\RegList]
	Object Type: [OSM v20\Modbus v31\RegList]

	Register
	Object Type: [CDM v20\Modbus v31\RegList\Addr]
	Object Type: [OSM v20\Modbus v31\RegList\Addr]

	Advanced Settings
	Object Type: [OSM v20\Modbus v31\Advanced]
	Object Type: [CDM v20\Modbus v31\Advanced]
	Object Type: [OSM v20\Modbus v30\Advanced]
	Object Type: [CDM v20\Modbus v30\Advanced]

	Formula Setup
	Object Type: [Standard\AMFormula]

	Modbus System
	Object Type: [Modbus]

	Default Modbus Device
	Object Type: [Modbus\Default]
	Frequently Used Objects
	Notes
	Full Object List
	Notes

	Appendix A: Modbus Integration Summary
	Modbus over TCP/IP
	Modbus over Serial-line
	Function Codes
	Register Address
	Register List

	Register Value
	Checking Values

	Driver Versions

