

Commander Tutorial
This tutorial shows how to use the main features of Commander version 2. It covers Commander’s
integrate, control, and inform functionality, as well as introducing general North technology such as
Zip and the Start Engineering applications.

Work through this tutorial using the North Training Pack, containing: ObSys software, Commander,
and Zip modules.

This tutorial relates to the Commander v2.0 (build 17/08/22) base firmware, distributed with the September
2022 release of North ObSys.

Commander Tutorial 2

Contents

What is Commander? ... 7
Interface Technology 7
Programmable Control 7
Information Services 7

Commander Hardware .. 8
Power and Connectors 8
LEDs 8
Battery and Switches 9

Installing ObSys, the Engineering Software .. 10
Starting Installation 10
ObSys Setup 10

ObSys Overview .. 11
ObServer, the Communications Router 11
ObView, the Object Viewer 11

Basic Commander Settings .. 12
Engineering Commander at a known IP address 12
Changing Commander’s Label 13
Setting Commander’s Clock 14
Resetting Commander 14

ObView Window ... 15
Menu 15
Toolbar Area 15
Main Area 16

Commander Tutorial 3

Interfacing Commander to other Systems .. 18
Interface Licences within Commander 18
Starting an Interface 19
Stopping an Interface 19
Assembling the Training Pack Zip components 20
Interface Set up 21
The External System 22

What are Objects? .. 23
Value Objects 23
Container Objects 24
Object References 25
Relative References 25

Transferring Values .. 26
Reading from the Source Object 26
Writing to the Destination Object 27

What is Essential Data? .. 28
Pages and Objects 28
Simple Data Storage 29
Data Collection 30
Data Distribution 31
Adjusting Object Values 31
Limiting Adjustments 31
Simply Writing? 32

Setting Commander’s LAN Port ... 33
Connecting Commander to your LAN 33
Start Engineering Commander on a LAN 35
Communicating between Commanders 36
BACnet/IP and ModbusTCP 36

Saving your changes to a Backup .. 37

Loading from a Backup .. 38

Commander Tutorial 4

Time Control ... 40
The Calendar and Today’s Day-Type 41
Timers 42
Profilers 43

Introduction to ObVerse Programming ... 44
ObVerse Basics 44
ObVerse Properties 45
Property Purpose and Type 46
ObVerse Modules 47
Module Types 48
Module Inputs 49
Module Outputs 50
Moving an Item 51
Working with Pages and Sheets 52
Adding Comments 52
Saving ObVerse to Disk 53

ObVerse Processors .. 54
Running your ObVerse Strategy in Processor 54
Manually uploading ObVerse Strategy from the Processor 54
Accessing Property Values from Elsewhere 55
Watching ObVerse Run 56

Simple Web Pages .. 58

Controlling Access with the Security ... 59
Security Areas and Levels 60
Enabling Users 61
Specifying Access Security 62
Adding Users 63
Enabling Access Security on Web Pages 64
Access Security in Essential Data 65

Commander Tutorial 5

Alarms ... 66
Generation and Delivery 67
Alarm History 67
Generating Alarms using Essential Data 68
Generating Alarms from Zip Modules 69
Routing and Filtering 69

Other Alarm Destinations .. 70
Email 70
Printer 70
SMS 70
Other North devices 70

Telnet .. 71
IP Configuration 71
Query/Response 72

Default Configuration... 73

Commander Hub .. 74

Updating Commander ... 75
Cloud Update 75
TFTP Update 76
Pre-Installed CDMs 77
Zero Interface Licence Drivers 78

Internal Switch Summary .. 79
PROGRAM switch 79
DEFAULTIP Switch 79

Commander Tutorial 6

Getting started...

Commander Tutorial 7

What is Commander?
Commander is the smallest of North’s building controllers, which also includes ObServer. All the controllers
contain North’s interface technology, block-based programming language, and easy-to-use information
services. Commander can work as a stand-alone controller, or alongside other North controllers and display
systems, becoming part of a larger control or monitoring solution.

Interface Technology
Commander includes North’s interface technology. Commander can access
values from thousands of different systems in a common way, using North
drivers. This ability allows Commander to pass data between different
systems and enables different sub-systems within a building to be linked
together to form a single, coherent system.

Programmable Control
ObVerse is North’s block-based programming language. It is available in all
North controllers. Although it is easy to use, it provides real flexibility
during engineering, allowing the engineer to incorporate design changes
with minimal effort. Date and timer functions are standard, along with feedback control and logic.

Information Services
Commander supports North’s standard protocol, allowing communications with other North products,
including powerful engineering tools and display software. Commander also generates and serves standard
HTML web pages automatically - these remove the need for graphical design and provide a consistent user
display. Commander can also monitor and inform users about alarm conditions, using email or SMS for
example.

You can also extend information services using, for example, BACnet and Modbus.

Commander Tutorial 8

Commander Hardware
Commander is a two-board device. The upper board contains the main processor, memory, and Ethernet.
The lower board contains the power regulation, and the isolated RS232 ports.

Power and Connectors

 Power 12V - 24V AC/DC at 3VA

 Ethernet 10BASE-T with Auto-MDIX

 COM1 Isolated RS232 port

 COM2 Isolated RS232 port

Commander runs on any clean voltage supply between 12 and 24 Volts, either AC or DC. Although
Commander uses approximately 3VA when running (therefore at 12V it requires approximately 250mA and at
24V it requires approximately 125mA) North recommend you use 6VA supplies.

LEDs
 MODE On=Normal, Flash=Not Normal

 FLASH On=Writing to Flash

 LAN LNK On=Ethernet Link Up

 LAN ACT On=LAN port activity

 COM1 ACT On=COM1 port activity

 COM2 ACT On=COM2 port activity

Commander Tutorial 9

Battery and Switches
Remove the lid to access Commander’s battery and switches.

The battery supplies power to Commander’s memory during power-down, to
preserve settings.

Battery type: 1/2AA 3.6V

Setting the DEFAULTIP switch to ON forces Commander to restart and use its
default IP address of 192.168.192.167 instead of its assigned IP address. This is
useful if you do not know the normal IP address of Commander. It also enables
other areas – for example, TELNET. Setting the switch OFF forces Commander to
restart and use its specified IP address.

Setting the PROGRAM switch to ON (and restarting) enables programming of
new firmware into Commander’s flash memory.

The FACTORY switch should always be left OFF, unless following North’s instruction.

 To prepare Commander for use, follow these steps:
 Remove the lid by removing the two screws, and sliding the lid upwards
 Set the DEFAULTIP switch to ON, to force Commander to a known IP address of 192.168.192.167
 Apply power, in the range 12-24 VAC or DC – Commander will require approximately 3VA
 Insert the supplied 3.6V battery into the holder on the upper board
 Check that the MODE LED is flashing, to show Commander is in Default IP or Program mode.

2

+ -
1 2 3

O
NDEFAULT IP

PROGRAM
FACTORY

BAT1

+ - 3V6

Commander Tutorial 10

Installing ObSys, the Engineering Software
You can engineer all North products using North’s ObSys software package. This is a collection of Windows
applications, which are installed on a PC - most engineers use a laptop, as ObSys requires little processing
power or disk space.

Starting Installation
If you have ObSys on a CD-ROM or flash drive, just insert it into your PC – the ‘autorun’ feature will start the
installation automatically. If installation does not start automatically, you can run SETUP.EXE manually from
the drive. If you have ObSys on a shared network folder, or if you downloaded and unzipped ObSys from the
Internet to your own folder, then you must run SETUP.EXE manually from that folder. You may also be able to
run the auto extracting SETUP.EXE directly from the Internet.

ObSys Setup
 To specify what to install, follow these steps:

 At the How do you want to use ObSys? welcome page, press To
engineer North products.

 Read the Licence Agreement: if you are happy to, select I accept..., and
press Install.

Commander Tutorial 11

ObSys Overview
ObSys is a package containing several Windows applications. ObServer is the main application. ObView is
another important application. Engineering applications needed later also include ObVerse Editor, WebView
Editor, and Object Editor.

ObServer, the Communications Router
ObServer, shortened from Object Server, is the communications router of ObSys. Other
XOM-compatible applications can link to, and communicate via, ObServer. ObServer also
supports interface drivers, supplied in ObServer Module files, OSM files, and these can
communicate via ObServer. ObServer can also link across physical networks to other XOM-
compatible products.

ObView, the Object Viewer
ObView is an application that uses ObServer to communicate. ObView provides a simple
way of discovering, showing, and editing values. It also supports more advanced features,
such as engineered views, and can support different levels of users with tailored views –
but you do not need these when simply engineering other North products.

 To start engineering using ObView, follow these steps:
 From Windows Start, select All Programs > North ObSys > Start Engineering

Commander Tutorial 12

Basic Commander Settings
The first things to do, when setting up a Commander, are to set its label and real-time
clock.

Engineering Commander at a known IP address
 To set Commander to a known IP address, and start engineering, follow these steps:

 Connect the PC and Commander directly using Ethernet cable – the Commander can
automatically sense the type of cable and cross the wires if necessary

 Set Commander’s DEFAULTIP switch to ON. This will force Commander to ignore its
specified LAN settings and use the default IP address 192.168.192.167, with a subnet
mask 255.255.255.0 instead

 Set your PC’s IP address to a static compatible address, say 192.168.192.1, and
its IP mask to 255.255.255.0

 From Windows Start, and select All Programs > North ObSys > Start
Engineering

 From Start Engineering, select Commander at default IP address – ObView
will set Commander as the marked object, and then will display the top-level
object in Commander (see note)

 Left-click on Configuration to open it, and ObView will show a list of the last
Configuration objects it found – and press Scan. Once finished, ObView shows
the Configuration objects within this Commander

Press Back to go back to the previous view - the top-level objects within
Commander. At any time, you may re-run Start Engineering and select
Commander (Default IP Address) to get to the top-level of Commander

Note: If ObSys finds no objects, ObView cannot communicate with the
Commander – perform the actions above again, checking the LAN LNK and LAN
ACT LEDs.

Commander Tutorial 13

Changing Commander’s Label
When first supplied by North, Commander’s label consists of the word Commander followed by its serial
number – for example ‘Commander SN80002014’.

From the ObView window that shows the top-level of Commander, you can check the current setting of the
Commander Label – although it cannot be changed from this page.

 To set Commander’s label, follow these steps:
 From the top-level of Commander, click on Configuration
 Move your mouse over the words ‘Commander Label’ – the mouse is in the shape

of a hand – which means the value can be changed
 Click the Commander Label object (where the mouse is a hand) and the adjust

popup window will appear, showing the current value
 Modify the text in the box, and press Ok – Commander will only allow text up to 30

characters in length in this Label
 Press the Back button to get back to the top-level of Commander

Notice how some objects have a value to the right of the label. Values that can be
viewed, but not adjusted, are shown without a box, values with a box around them
can be adjusted - you change the object’s value by left-clicking on the box, modifying
the value on the popup window, and pressing Ok. Some objects have no value, but
instead are container objects (they contain sub-objects). Clicking a container opens
that container and clicking on the Back button closes it – we will cover this later.

Commander Tutorial 14

Setting Commander’s Clock
Commander has a battery-backed clock that holds the current time. This is used to time-stamp alarms and
logged values; the ObVerse programming language can also use it.

 To set the local time within Commander, follow these steps:
 Press Go to to go to the Marked Object, Commander, and then click on Configuration, and then on each

Local Date & Time value - an adjust popup window will appear to set the date and time individually.
Modify the date and time in the box – notice the format of the date, dd/mm/yy. The time format can be
hh:mm or hh:mm:ss – press Ok when you are finished adjusting. The new date and time will appear on the
window if set correctly.

Resetting Commander
Some changes have no effect until Commander is reset – there are several ways of
doing this: if Commander is near, you can power it off and on; you can change its
DEFAULTIP switch; or you can perform a reset using ObView.

 If you wish to reset Commander using ObView, follow these steps:
 Press Go to to go to the Marked Object – Commander - and then click on

Configuration, and Platform Information. This page shows the version of
software in Commander, reset counts, and other information relating to the
Commander hardware itself

 Click on Reset Platform, select ‘Yes’, and press Ok – the Commander will reset
itself – press Refresh to get the page to re-request all the values – you may have
to wait until Commander re-establishes Ethernet connections – and notice the
Reset Count incremented, and the Last Start Date Time shows the new date and
time

 Press Go to to go (back) to the Marked Object, Commander

Commander Tutorial 15

ObView Window
We have just used ObView, the Object Viewer, to do some simple editing of Commander. Before we go further,
let us take a quick look around the ObView window itself, so you can understand how the main engineering
software works.

Objects within the North system are organised in a tree-structure, in a similar way to files and folders on a
disk - ObView allows us to navigate over this tree structure, by displaying information about a particular
object, including its sub-objects, and allowing us to move up and down the tree.

Menu
The menu allows access to certain commands and functions to perform
on the displayed object - we will learn about these, as we need them.

Toolbar Area
The toolbar area below the menu shows information about the
displayed object and allows the most common actions to be triggered
quickly.

Back will load the view of the previously opened object (usually of this
objects parent.)

The label area shows the label of the device and the displayed object
within that device.

Go to will load the view of the Marked Object – in our example,
Commander.

Refresh will reload the page and re-collect its values and statuses.

Scan causes ObView to re-scan the displayed object for sub-objects. ObView enabled the button only on
objects that have a variable number of sub-objects.

Less decreases the window width – you can still check the status and object references by scrolling the
window right and left. More increases the window to full width.

Commander Tutorial 16

Main Area
The main area of the window contains the list of sub-objects that are within the displayed object.

Each sub-object appears on a single line, starting with an Icon and Label, followed by a Value (if the sub-
object has one) or followed by a Status (if the sub-object has one), followed finally by an Object reference.

If there are too many sub-objects to fit on the main area, scroll-bars appear on the right-hand side of the
window.

Left-clicking on a sub-object causes an action depending on the type of sub-object:

If the object has an adjustable value, with a box surrounding the value, then left-clicking on the adjustable
value will allow you to adjust the value – we saw this earlier.

If the sub-object has a non-adjustable value, then left-clicking on the sub-object has no effect.

If the sub-object contains other things, then left-clicking on that container will cause ObView to open the
container and display its sub-objects – again we have seen this as we navigate around.

Right-clicking on a sub-object shows a popup menu with various actions that can be performed on or with
the sub-object:

If the sub-object has a value, then Copy Value copies the current value to the clipboard, ready to be pasted
elsewhere.

If the sub-object is adjustable, then Adjust displays the popup window for adjusting it; Cut Value copies the
current value and sets the object to zero or blank; Paste Value pastes the value in the clipboard to this object;
Delete Value simply sets the object to zero or blank.

If the sub-object contains other things, then Open opens that container, and displays its sub-objects – this is
the default action when you left-click on the object.

Commander Tutorial 17

Integrating...

Commander Tutorial 18

Interfacing Commander to other Systems
One of the roles of Commander is to provide interfacing to third-party systems. It does this using North’s
interface technology. For each third-party system, North produce a driver – a protocol-converter – that
converts the communications language of that system to North’s standard language, XOM. North products
are based on different hardware platforms, and so North supply drivers in platform-compatible files.

Drivers for Commander come in Commander Module files, or CDM files. Commander comes with popular CDM
files pre-installed. It is possible to install other CDM files and to update the CDM files to the latest version – we
cover this later in this tutorial.

Although Commander has many pre-installed drivers, it only supports up to four operating interfaces at one
time, and each requires a driver.

Interface Licences within Commander
North supply Commanders with a certain number of interface licences (ILs),
usually 1. These are used to license the use of drivers.

As Commander starts an interface using a driver, that driver borrows an
interface licence from Commander - if Commander does not have any
available, the driver will not operate, and the interface will not start.

When an interface is no longer required, and the driver stops, the driver
returns the borrowed interface licence to Commander – allowing another
driver to borrow it, and therefore allowing you to change the interface as you require.

 To see the current Interface Licence information within Commander, follow these steps:
 Open Configuration, Interfaces, Interface Licences. Each Commander has a unique Serial Number. Total

Licences shows the number of licences the Commander has - Available Licences shows how many are still
unused

If you wish to increase the interface licences with a Commander, telephone North. North will need details
from the Interface Licences page to guide you through adding more.

Commander Tutorial 19

Starting an Interface
Before you start an interface using a driver, you need to find out whether the driver is installed on the
Commander, and then specify that the interface use that driver.

In this documentation, we will set up Interface 1 to use the ZipMaster driver, as we will need this later.

 To set up Interface 1 to connect to a Zip system, follow these steps:
 Open Configuration, Interfaces to view the interfaces currently set up – and the drivers they use – if they

are all blank, then there are no interfaces. Open Installed Drivers to view
a list of drivers currently installed in the Commander

 Scroll up and down and find the Installed Driver object that has the
value ‘ZipMaster’. Copy this value by right-clicking on the object and
selecting Copy Value from the popup menu. (You can also copy the
object’s value by clicking to highlight the object, and pressing CTRL+C on
the keyboard)

 Press Back, then right-click on Interface 1, and select Paste Value from
the popup menu. This will set the value to ‘ZipMaster’. (You can also
paste to an object’s value by clicking to highlight the object, and pressing
CTRL+V on the keyboard)

If there are enough available interface licences available, the driver will operate and will appear in the top-
level of Commander (you will need to re-scan that level.)

Stopping an Interface
 To remove a driver, and therefore stop an interface, follow these steps:

 Open Configuration, Interfaces. Right-click on Interface 1 and select Cut Value from the popup menu.
This will delete the value and therefore stop the driver.

Important Point – if you are following the tutorial, set Interface 1 to ‘ZipMaster’ to start the ZipMaster driver –
we will use it later.

Commander Tutorial 20

Assembling the Training Pack Zip components
This tutorial, and others, are written assuming you have access to a set of Zip modules, which allow you to try
out certain features of the products. If you are using the Zip components from the Training Pack, they might
need assembling.

Zip components typically require connecting, so that a Zip module can share a NetCard’s power supply and
Zip network. The components are made up of a circuit board with input and output connectors, and green
carrier. Each module is supplied with the correct amount of green carrier for the module. Each NetCard is also
supplied with two green carrier endcaps.

 To assemble the Zip modules in the Training Pack, follow these steps:
 Remove the components from the NC12B, M7002, and M7007 boxes, and slide the circuit boards from the

green carrier
 Clip together the green carrier, except for one end-cap.
 Slide into the assembled carrier the NC12B first, then the M7002, then the M7007, ensuring that the 5-pin

connection on each module slots into the 5-plug connector of the previous
 Add the final endcap to hold everything in place. This keeps the circuit boards connected and prevents you

touching the underside of any modules when they are in use.
 With the NC12B on the left, set the address switches of the M7002 to Off-Off-Off-Off (address 0) and the

M7007 address switches to On-Off-Off-Off (address 1)

ZIP
M7007

ZIP
M7002

NC12B

Commander Tutorial 21

Interface Set up
When Commander starts an interface, the interface normally adds two new objects to the top-level of
Commander – you will therefore need to Scan the top-level.

The first object that the interface adds is the Setup object, which has a yellow hexagonal nut icon (see the
icon to the right). This is where values relating to the driver’s operation are – things like RS232 port numbers,
baud rates, and system labels. The second object added to the top-level of Commander represents the
system that can be accessed using the driver.

Different drivers have different setup values, which, because of their diversity, are not documented here.

 To configure the interface for the Training Pack Zip, follow these steps:
 Open Zip Setup, (you may need to Scan the top-level object if you

have just added the interface) to view the Zip setup objects
 Set COM Port to ‘1’, to tell the driver to use COM1 on the Commander
 Connect 12VDC to the NC12B’s power connector on the assembled

Training Pack Zip modules - the NC12B’s POWEROK led should light,
and the M7002 and M7007 OK LEDs should flash

 Use the cable to connect the NC12B to the Commander’s COM1 port -
the OK LED of each Zip module should glow solidly to indicate that it
has a link with the ZipMaster

Commander Tutorial 22

The External System
The second new object that is added to the top-level of Commander when an interface starts, represents the
external system that can be accessed using the driver. It is usually shown with icon that looks like that system
(see the Zip System icon to the right). This is where objects relating to the system are located – devices,
values, controllers, sensors, etc. The objects within each system are different, so they cannot be documented
here.

 To view the Zip modules, follow these steps:
 Open Zip System to view the system’s object – you may need to Scan to

see any Zip modules on the network

Commander Tutorial 23

What are Objects?
Before we navigate down into the objects within an external system, let us examine these things we call
objects. There are two main groups, or classes, of objects – value objects and container objects.

Value Objects
We have seen value objects (objects that have a value) before. Some are read-only, and just provide
information, like sensor values; some are adjustable, like set points and labels.

Within North’s extensible object model (XOM), each value object also has a type – which indicates the type of
value it holds. For example, the type could indicate that the value can only hold whole numbers. Below is a
list of the main object types and the values they can hold.

Value Type Values Format Examples
Number Whole numbers, positive or negative ddd 1, 50
Float Numbers with a decimal point ddd.dddd 12.5, -2.0, 5239.2345
NoYes A digital state – No or Yes d

Where 0=No, 1=Yes
0, 1

OffOn A digital state – Off or On d
where 0=Off, 1=On

0, 1

Text A text value, up to a certain defined length ccccccc...ccc (up to max chars) “Some Text”
Date A calendar date dd/mm/yy 12/01/11, 25/12/07
DateTime A moment in time dd/mm/yy|hh:mm:ss 25/12/11|15:00:00
Enum An enumerated value, where a number

represents something else
ddd
Where 0=aaa, 1=bbb, 2=ccc

4

Obj An object reference cccccc (0-30 chars) S1.C1.V
Times A list of on-off times hh:mm-hh:mm,hh:mm-hh:mm 07:30-12:00,12:30-17:00
Profile A list of value change points hh:mm=v,hh:mm=v,... 07:30=21,17:00=12
Ip An IPv4 address ddd.ddd.ddd.ddd 192.168.0.4

As examples, the Commander’s label is a Text object, and the Commander’s clock is a DateTime object.

Each object type has extra parameters that define type-specific things – for example, text objects have a
maximum length parameter; number objects have a high value parameter – but we will cover this later.

Commander Tutorial 24

Container Objects
Container objects are objects that contain sub-objects. We use containers to group things together or repeat
things. Again, each has a type, but there is no simple list as there are hundreds of container object types –
however you do not need to know or remember them.

You have already seen and used container objects – the top-level of Commander is a container object; the
Configuration object is a container object; the Platform Information object is a container object.

Container objects split into two main types: fixed and variable.

Fixed container objects always contain the same sub-objects. Fixed container objects never need scanning
to discover what sub-objects they contain. It is possible to backup data from an object and restore it to
another object of the same type because they always contain the same sub-objects. It is also possible to
generate object-specific views that can be re-used, and object-specific processes. In summary:

• Always contain the same sub-objects, wherever they are
• Do not need scanning
• Backups can be re-used elsewhere, as the sub-objects are the same

Variable container objects contain sub-objects that are site-specific. There is no predefined list of sub-
objects for each object - each site is usually different. The sub-objects may ‘stabilise’ over time, or they may
change regularly. The top-level object of Commander is a variable container object, and when you change the
interfaces within Commander, you change the top-level’s sub-objects – adding an interface normally adds
two sub-objects. You can scan variable container objects to discover the sub-objects they contain. In
summary:

• Different sites have different sub-objects
• Need scanning when you first see them, and when their contents have changed
• Backups cannot be used elsewhere, as the number of objects changes

Within any container object, each sub-object must have a unique identifier, to allow us to refer to that sub-
object – we call this its sub-object reference, and it is normally a few characters of text.

Commander Tutorial 25

Object References
When a task in a device needs to read the value of an object, say to calculate something, we need to be able
to specify which object it should read. We call this ‘referencing an object’, and we call the identifier of the
object its ‘reference’.

Object references are made up of the unique sub-object references, which are appended, (using a period, or
full-stop, to separate the parts,) depending on the route from the task to the object.

For example: Consider a route through Commander, with its sub-object Configuration (sub-object reference
O); its sub-object Platform Information (sub-object reference PI); its sub-object Last Restart (sub-object
reference LR); its sub-object Reset Count (sub-object reference RC). The complete reference for the Reset
Count within Commander is O.PI.LR.RC - if a task within Commander needs to find the count of resets, it
would read the value of the object O.PI.LR.RC

Notice how the reference describes the route to the object – go to these sub-objects, read this sub-object.

Relative References
This concept of the route to the object being held in the reference makes the references extendable. When
another device needs to read the count of resets within a Commander, it needs a reference that describes
both the route to the Commander and the route to the object within that Commander. All North products
that support IP networks have a sub-object called the IP Network (IP), which in turn has sub-objects that
represent known IP addresses (say CDIP could represent IP address 192.168.192.167). This would make the
object reference to the count of resets IP.CDIP.O.PI.RC

 To see different object references, follow these steps:
 Start Engineering Commander at its default IP address: ObView puts the object reference of the current

object just above the word ‘Object’ in the column title bar, and sub-object references below it.
 Open Configuration, Platform Information, Last Restart to see the objects within - the object reference

to this object has become O.PI.LR
 Right-click on Reset Count, and select Copy Object Reference from the popup menu – the object

reference (O.PI.RC) has been copied to the clipboard
 Run Windows Notepad, right-click in the main text area, and select Paste from the popup menu – and the

object reference appears in the document

Commander Tutorial 26

Transferring Values
All North products support the concept of a transfer – a task that can transfer the value from one object to
another. These transfers form the most basic integration between systems.

Commander has 500 transfers built-in. You can use each to transfer values from any object to any other
object. The source we read the value from, and the destination we write the value to, can be internal to
Commander, or in one of the external systems connected to Commander – and we specify these using object
references. Be careful - if you try to transfer a time-type object to a no-yes-type object, the result might not be
what you were expecting!

Reading from the Source Object
Transfers happen in two parts – reading the value, then writing it if necessary.

The first part of a transfer is the reading of the source object. As well as specifying the reference of the source
object, we need to specify how often we want to read it.

 To set up Transfer 1 to read from Zip modules on Interface 1, follow these steps:
 Start Engineering Commander using your ObSys
 Open Data Transfer (to view the 500 transfers,) then Transfer 1
 Set Source Object to ‘S1.M0.DI1.S’ – System one, Module zero, Digital input one, State. If this successfully

reads, the Value will change to 0 or 1, representing the open or closed contact; if the Source Read Fails
rises, then the transfer cannot read the object, and something is wrong1

 Leave the Source Read Rate as ‘ASAP’. The transfer reads the object as fast as possible – try changing the
state of the input and watch the Value change.

Although the default rate is ASAP (as soon as possible), choose the read rate carefully, as some older systems
may struggle to perform if they are being constantly read from. Consider also: if you have 100 reads within
transfers, and each read takes 1 second (due to slow communications say), it will take 100 seconds to read
them all!

Note: If the transfer source reading fails, check the Source Object reference is correct, and the
communications route to the object is working.

Commander Tutorial 27

Writing to the Destination Object
The second part of a transfer is the writing of the value to the destination.

Every time the transfer reads the value, it compares the new value against the current value it holds. If the
value has changed, the transfer writes the new value to the destination object. If the value has not changed,
there is usually no need to re-write it.

Some systems, however, can forget values if they lose power, and so they may need a periodic re-write of the
value, to correct the loss of memory after a power fail.

Similarly, some integration designs require a periodic re-write of a value to reset a temporary local
adjustment.

The Destination Object specifies where to write the value. The Dest Write Rate allows you to specify the
periodic rewrite rate – however if you set it to ‘COV’ (change of value) the write will only happen when the
value changes (or on power-up of Commander).

 To set up Transfer 1 to write a value to the Zip modules on Interface 1, follow
these steps:

 Set Dest Write Object to ‘S1.M0.DO1.S’ – System one, Module zero, Digital
output one, State – if the object reference is correct, and communications
route to the destinations is working, the Value will be written to the relay -
therefore the relay will follow the state of the digital input 1.

Remember that the destination write occurs whenever the value changes, the
read rate will dictate how fast the destination responds to source changes.

The Zip system remembers states and values through power-cycles, and
therefore you can leave the Write Dest Rate as COV, unless some other task is
causing temporary adjustments that need resetting.

Commander Tutorial 28

What is Essential Data?
Essential Data is the name of Commander’s value database and can perform useful tasks.

Although it is not necessary to collect values into a database within Commander before they are used, there
are benefits:

• A value can be collected once, to save other tasks each collecting it individually
• Once collected, a value is immediately available from the database, rather than a task or user

having to wait for slow communications
• Associated values, such as labels and limits, can be assigned in a consistent way

If it is used, Essential Data provides data for a wide range of other services, which may be used:

• Essential Data can hold a value and read or write it elsewhere
• Essential Data can check whether a value is within an acceptable range, and generate alarm

messages if necessary
• Essential Data can build historic logs of the value
• Essential Data values are uploaded to Commander Hub, part of North’s cloud services
• Commander can automatically make Essential Data available on web pages
• Some drivers make Essential Data available on other protocols – BACnet/IP, Modbus, Zip

Pages and Objects
Essential Data stores data in a two-layer structure that consists of pages and objects.

Commander’s Essential Data has pages. Each page has a label, which could refer to a location, say ‘Living
Room’, or function, for example ‘Heating’. If a page has no label set up, other tasks cannot access it.

Each page has objects. Each object has a label, value type, a value, and access rights, alongside other
properties. If an object has no label, other tasks cannot access it.

When Commander shows Essential Data as a web page, this page/object structure provides hierarchy.
However, the page/object structure has little effect on data collection.

Commander Tutorial 29

Simple Data Storage
Commander can use Essential Data for simply storing values. This needs the least set-up
– just a label, a value type, and the actual value. As an example, an engineer could write
ObVerse strategy to read a heating setpoint from an Essential Data object.

 To set-up a simple Essential Data page, follow these steps:
 Open Configuration, Essential Data – to see some general information, along with

the list of pages to edit
 Open Page 1, to see the settings for Page 1, along with a list of objects within Page 1
 Set the page’s Label to ‘Zip Input 2’

 To then set up simple value storage, follow these steps:
 Open Object 1, to see the setting for object 1 on page 1
 Set Label to ‘Count’, Type to ‘Number’, and Current Value to ‘20’ – the Value Last

Updated date/time object changes, to reflect when the value was set

We have now created storage for a value within Essential Data. The engineer can always
change the value within the Configuration section, as we have just done – but this is
only really for engineering the pages and objects – other tasks should access the values
from the top-level of Commander.

 To see which pages and objects are available within Essential Data, follow these steps:
 Press Go to to get to the top-level of Commander
 Open Essential Values – this is the ‘public’ side of the database, and by default, has

this friendlier label that appears on the web pages
 You may need to Scan the list of pages you have created
 Open Zip Input 2 to view the objects within the page - if necessary, Scan the list of

objects – in this example, a single ‘Count’ from above

Commander Tutorial 30

Data Collection
Using Essential Data purely as data storage is a contrived example. However, data collection is
probably the most important use, and it builds on data storage.

Rather than just storing a value, an Essential Data object can be set up to collect its value
periodically from another remote object – which could be within Commander, from one of its
interfaces, or from another North device.

 To add an Essential Data object with data collection, follow these steps:
 Open Configuration, Essential Data
 Open the page and object that will be modified for data collection – we will use the Zip Input

2 page, and the Count object
 Set Remote Object to ‘S1.M0.DI2.C’ – i.e. the count of the times the digital input changes

from 0 to 1
 Set Remote Rate to ‘1 minute’ – we will have the data collected every minute
 Set Remote Action to ‘Read’ – we will read the remote object – and the Current Value should

change to the correct count of the digital inputs.
 Connect a simple switch between the C and I terminals of DI2 of the Zip M7002, and open

and close the switch a few times to cause the digital input’s count to rise. Press Refresh to
see the Current Value change.

The Remote Rate requires a little thought. Although in an ideal world we would collect the data
constantly, this can cause communications bottlenecks both within Commander, and on
systems connected to Commander. So, before setting the Remote Rate, consider:

• How fast the value might change - outside air temperatures change quite slowly
• How fast the data will be seen from within the Essential Data – for example, the web

pages may only refresh every minute
• How many other values are collected from the same external system - if there are 100 values being

collected, and the external system communications are slow and only allow one read per second,
then it will take 100 seconds, or approximately 2 minutes, to collect all the values

Commander Tutorial 31

Data Distribution
As well as collecting data, the engineer can use Essential Data to distribute data – i.e. writing values from
Essential Data to other objects.

Adjusting Object Values
Normally Essential Data spends its time reading a remote object, and perhaps showing it to a user.

Sometimes, however, we need to allow the user to change the value, and have Essential Data write the value
back to the remote object. This is the normal operation of Essential Data – if the object is adjustable.

When the Remote Action is set to ‘Read’ and the object is made adjustable, Essential Data spends most of the
time reading the remote value. When the user adjusts the value within Essential Data, Essential Data attempts
to write the new value to the remote object, before going back to reading it. If the write succeeds, the next
read will collect the new value. However, if the write fails for whatever reason (value not allowed, or
communications are too busy), Essential Data just goes back to reading it.

Limiting Adjustments
When adjusting values, it would be useful to limit the range that the user can set the value to. You do this with
the Value High Limit and Value Low Limit objects.

 To put an adjustable, limited value into Essential Data, follow these steps:
 Open Configuration, Essential Data
 Open Page 2, and adjust the page’s Label to ‘Test Changes’
 Open Object 1, and adjust the object’s Label to ‘Limited’
 Set Value Type to ‘Number’, Adjustable to ‘Yes’, and Value High Limit to ‘10’

If the high and low limits are both set to zero, then limits are not checked when the user makes adjustments.

The web server allows users to adjust Essential Data, and it is safer to put limits on these adjustments, than
leave them unchecked.

Commander Tutorial 32

Simply Writing?
Sometimes we just need to write a value to an object – when the user changes it, we write it. Essential Data
supports this with its Remote Action set to ‘write’. In this mode, Essential Data never reads the remote object.
You can decide whether to write the value only when it changes, or when it changes and periodically after the
change. As we said previously during Transfers, this periodic writing can be useful.

 To put Essential Data in control of a relay, follow these steps:
 Open Configuration, Essential Data, Test Changes, Object 2
 Set Label to ‘Relay’, Type to ‘OffOn’, and Adjustable to ‘Yes’
 Set Remote Object to ‘S1.M0.DO3.S’, Remote Rate to ‘1 minute’, and Remote Action to ‘Write’. Every

minute (or whenever something adjusts this Essential Value), the value will be written to the State of DO3
on M0 – i.e. the third relay on the Zip M7002 in the Training Pack.

You can adjust the value from the top-level of Commander, by navigating to Essential Values – remember you
may need to scan and refresh as the number of pages and objects has changed.

If you set the Remote Rate to ASAP, the value will be written only when it is changed – be careful that the
remote object cannot be modified from elsewhere, or things will get very confusing!

Summary of the Essential Data set-up so far in
the tutorial:

Page Object Use Adjustable
1 1 Zip Input 2 - Count No
2 1 Test Changes - Limited Yes
2 2 Test Changes - Relay Yes

Commander Tutorial 33

Setting Commander’s LAN Port
Up to this point, all engineering within this tutorial has been done with your PC directly connected to
Commander, effectively creating their own ‘mini-LAN’ – with Commander at its default IP address. However,
Commanders normally sit on a LAN, and provide information to users or other devices on that LAN.

Commander supports three methods of addressing on the LAN Port: Default, Static, or Dynamic.

Default IP Addressing forces the IP address to 192.168.192.167 with subnet mask of 255.255.255.0 – this is
useful for quick engineering, or if the Commander’s IP address has been forgotten.

Static IP Addressing instructs Commander to use the specified IP address and subnet mask – you can also
tell it DNS and NTP server addresses. This is the most useful way, as users and other devices may need to
know exactly where Commander is.

Dynamic IP Addressing instructs Commander to request its IP address and subnet mask from the LAN’s
DHCP server – the server normally also supplies DNS and NTP server addresses. Dynamic addressing is
simpler that static addressing, but the IP address given by the DHCP server to Commander may change after
a period.

Connecting Commander to your LAN
First, you need to set the Commander IP addressing to match your LAN - either to use dynamic
addressing, or to use a static IP address. Then you need to disconnect the Commander from
your PC and connect it to the LAN.

 To set the Commander LAN Port to use dynamic addressing, follow these steps:
 Go to the top-level of Commander; open Configuration, LAN Port to view the current

settings. The Current IP Address is the address that Commander is using right now –
192.168.192.167 is the default IP address. The IP Address object holds the address that you
wish the Commander to be – set it to ‘0.0.0.0’ to tell Commander to use DHCP to get its IP
settings.

 Change the Commander’s DEFAULTIP to OFF – it will now restart and use DHCP to get an IP
address

 Connect the Commander to your LAN switch, hub, or router, using Cat5 cable

Commander Tutorial 34

 To set the Commander LAN Port to a static IP address, follow these steps:
 Go to the top-level of Commander, open Configuration, LAN Port to view the current settings
 Set IP Address to a known IP address on your LAN, and set the Subnet Mask for your LAN – in this

document, we will use 192.168.2.150 and 255.255.255.0 – you may need to ask your network administrator
 If you know the Gateway Address to enable access to other networks, DNS server address to resolve

domain names to IP addresses, and/or NTP Server address to access accurate world time, then change
them – they can be on the local network, or if you have a Gateway Address set, they can be on an external
network – again, you may need to ask your network administrator

 Power down the Commander, and connect it to your LAN router using cable – Commander can
automatically sense the type of cable and cross the wires if necessary

 Change the Commander’s DEFAULTIP switch to OFF – it will now restart using the IP address you specified
 Connect the Commander to your LAN switch, hub, or router, using Cat5 cable

Once you have connected Commander to your LAN, you will also need to prepare your PC for working on the
LAN (setting its IP address, etc.) before you connect your PC to the LAN.

The ObView window that you used to set the Commander’s new IP address will no longer get values from
Commander because it is talking to the Commander at the old IP address – so Close the ObView window,
ready to Start Engineering again later.

In the next part of the tutorial, we will work with the Commander over your LAN – so if you cannot
communicate with the Commander, and you need to check any of these changes, remember to go back and
set Commander to its default IP address to find what went wrong!

Commander Tutorial 35

Start Engineering Commander on a LAN
Once you have connected Commander and your PC onto the same LAN, you can engineer Commander across
that LAN.

 To start engineering Commander across your LAN, follow these steps:
 From Windows Start, select All Programs > North ObSys > Start Engineering
 From the Start Engineering page, select North IP Devices Connected to network, and then open the

Commander to engineer. ObView will display a list of the last objects it found in a device at that address.
You may need to press Scan to see the contents of the Commander.

 Set the Marker to this object, by selecting Marker, Set from the menu. This sets the Marked Object to the
new address of the Commander.

 Open Configuration to see the current date - remember, you may need to Scan.

It is always useful to have a recognisable label within the Commander you are looking for on a network of
North products.

Commander Tutorial 36

Communicating between Commanders
Once a Commander is on a LAN, it can communicate across the network with other Commanders –
transferring values, or sending alarms, for example. However, you must first set up Commander’s IP Alias
table with the IP addresses and optional security-key – an alias is just a short sub-object reference for the
device, rather than always having to use its IP address.

 To tell Commander to find other North devices on the IP network, follow these steps:
 Open Configuration, North IP Devices
 Set Autofill List to ‘Scan now’– Commander will find other North products on the LAN, and then press

Refresh – each will have been given a reference automatically. You can change this if you wish (keep the
reference short) or disable Commander talking to a device by deleting its reference

 Go to the top-level of Commander, and open North IP Devices
 You may need to Scan to see the devices at the IP addresses– you should see ObSys Engineering software

running on your PC

You can now navigate down these devices – the first time you access them you may need to scan and refresh
to see the objects they contain. The power of XOM means you may use any of the objects you find in transfers,
or other tasks within Commander.

BACnet/IP and ModbusTCP
Some North drivers expose the Essential Data to other systems – making it easy to set Commander as a
server.

Two examples of these types of driver are BACnet/IP and ModbusTCP. You must start the interface as any
other, but once set up it will work automatically, making the Essential Data available to other systems.

You need to refer to the document about the driver to learn how to set up and use it.

 To view the documentation for the BACnet/IP driver, follow these steps:
 From Windows Start, select All Programs > North ObSys > Product Documents
 Click on the Search tab; in the search for box, type ‘BACnet’ and press Search - the window shows a list of

documents that it has found containing the word ‘BACnet’ in the title
 Double-click on BACnetIP Driver, and the document appears.

Commander Tutorial 37

Saving your changes to a Backup
Before we leave this section of the Tutorial, we should cover saving the changes you have made to a
Commander.

Whenever you change the setup of a Commander (or any other equipment for that matter), you should save
your changes. This is good engineering practice.

The Engineering Software can back up any object. It only backs up objects that can be written – any read-only
objects are not saved.

Backup files, with the file extension ‘.obs’, are text files, and as such can be viewed and edited.

 To save the settings within a Commander to a backup file, follow these steps:
 Navigate to the top of the Commander
 From the menu, select Object, Save to a backup…
 Select the folder into which the backup is to be stored – by default, the selection is the folder for

the specific Commander within North’s TypeInfo folder:
C:\ProgramData\North Building Technologies\ObSys\TypeInfo\DefaultSite\IP\<IP Alias>

 Press Save to start the backup process.

 To save any object to a backup file, follow these steps:
 Navigate to the object you wish to back-up, for example, Configuration, Essential Data, Page 1
 From the menu, select Object, Save to a backup…
 Select the folder, (you may change the default file name if you wish), and press Save.

Note: when saving a backup, the backup application, ObSave, will only backup items it knows about – for
example, if you have not scanned a Zip network, ObSave will not save it.

See the later section ‘Default Configuration’ about saving your work to flash memory within Commander.

Commander Tutorial 38

Loading from a Backup
Once saved, backup files can be loaded into the original Commander, or anywhere else that has the same
object structure (like another Commander). Object backups can also be loaded into other objects of the same
structure.

For example, a backup from an Essential Data Page in ObSys can be loaded into an Essential Data Page within
Commander.

 To Restore an object, follow these steps:
 Navigate to the object you wish to restore with the same object type as the original backup. For example,

Configuration, Essential Data, Page 8
 From the menu, select Object, Load from a backup…
 Select the folder and ‘.obs’ file, and press Open – the loading starts.

Remember, when loading a backup, the loaded data may change Commander’s operation – for example, if
the IP Address is set, Commander will operate at that new IP address.

Commander Tutorial 39

Controlling...

Commander Tutorial 40

Time Control
Timers and profilers allow users to control when things happen in the day, and
when they do not. You can save energy and keep the occupants happy.
Commander supports timed control with its Calendar, along with its Timer and
Profiler tasks.

Commander’s single calendar determines today’s day-type, and its twenty timers
and profilers use today’s day-type to determine which of their values to set based
on time periods.

Commander supports ten different day-types: Commander uses one of them as
day-type ‘off’, leaving you nine to define and use yourself. They are numbered 0
(off) and 1 – 9.

Commander Tutorial 41

The Calendar and Today’s Day-Type
The Commander’s calendar determines today’s day-type. It does this either by
requesting it from some other calendar in a different North device, or by calculating
the day-type itself.

If you have a ‘master’ calendar elsewhere on the system, Commander’s Calendar
can request the day-type from that master – you need to specify the object
reference of the master calendar’s day-type.

If you are calculating the day-type in Commander, it works in the following way:
The calendar determines whether today’s date is an exception date – if so that
exception day-type is used – otherwise the day-type based on the day-of-week is
used.

The calendar re-calculates the day-type every minute, based on the day-types and
the exception dates.

 To set up a standard week within the calendar, follow these steps:
 Go to the top-level of Commander, and open Time Control – you may need to

press Scan to see the calendar and timers
 Open Calendar. You can now see the objects that make up the calendar,

including the day-type labels, the day-of-week day-types, and the exception
dates and day-types

 Adjust Day-type 1 Label to ‘Workday’
 For each of the weekdays Monday to Friday, adjust the Day-type to ‘1’ (Workday).

This means that weekdays are all workdays, unless the date is an exception date
 You can see the Current Day-Type near the top of the object list, along with a

Current Day-Type Label

This object list view of the calendar is good for engineering – imagine the power of
ObVerse strategy modifying the day-types for the week ahead perhaps.

Commander Tutorial 42

Timers
Commander uses timers to control off/on processes. Each timer produces an off
or on state, which can be accessed by other tasks.

Each timer has on-off times for each of the possible day-types and uses those on-
off times on days that have that day-type. The timer re-calculates the state of the
timer every minute.

 To set a timer, follow these steps:
 Open Time Control, Timer 1 to see the times, label, etc.
 Adjust Label to ‘Occupied’
 Adjust Day-type 1 Times, and change the Period 1 - Start value to ‘8:00’ –

either type in the box, or click-and-drag the slider – then the End value to
‘17:00’

 Repeat the last step with Day-type 2 Times, putting in ‘8:00’ to ‘12:00’ – we will
use this as a half day

Notice the State object near the bottom of the object list, and the Today’s Times –
which is useful for transferring to other things that have an ‘on-off times’ object.

 To send the state to another object, follow these steps:
 Adjust the timer’s Destination Object to the object reference ‘S1.M0.DO2.S’

(The second relay output of the Training Pack)
 After the next on/off time change, the relay turns on or off depending on the

timer state – if the object reference is wrong, the Destination Fails count will
rise

This object list view of timers is good for engineering. However, the user can view
and adjust the Timers and on-off times using the web pages.

Commander Tutorial 43

Profilers
Commander uses profilers to control analogue values over time. Each profiler
produces a value, which can be accessed by other tasks.

Each profiler has a list of change-points for each of the possible day-types and
uses those change-points on days that have that day-type. Every minute, the
profiler checks whether the current time matches a change-point time, and if so,
sets the value to that of the change-point.

 To set a profiler, follow these steps:
 Open Time Control, Profiler 1 to see the profiles, labels, etc.
 Adjust Label to ‘Setpoint’
 Adjust Day-type 1 Profile, and change the value to ‘8:00=21,17:00=10’
 Repeat the last step with Day-type 2 Profile, putting in ‘8:00=21,12:00=10’– we

will use this as a half day

The Value object will change only when the current time matches the time in a
change-point. If the Destination Object is specified, then when the value changes
it will be written to the object.

 To make a temporary value change, follow these steps:
 Change the Value object to ‘19’. The Value will remain at 19 until the next

change-point.

Notice the Today’s Profile object near the bottom of the object list which is useful
for transferring to other things that have a ‘time-value profile’ object.

This object list view of profilers is good for engineering. However, the user can
view and adjust the profiles using the web pages.

Commander Tutorial 44

Introduction to ObVerse Programming
Sometimes you need to do more than simply transfer a value from one object
to another – you need to calculate something, delay something, or perform
more complex functions on a value. North provides this flexibility with
ObVerse, a cause-and-effect programming language.

ObVerse consists of a range of modules. The engineer selects modules and
links them together to perform a desired strategy.

ObVerse strategy runs in an ObVerse processor within a device. Commander
has two ObVerse standard processors, and whenever Commander is powered-
on, these processors run their ObVerse strategy continuously.

You can create and edit ObVerse strategy using North’s ObvEditor application,
installed as part of the ObSys software. ObvEditor provides drag-and-drop graphical editing of ObVerse,
uploading and downloading of ObVerse strategy, and run-time monitoring of the strategy within the
processor.

ObVerse Basics
ObVerse strategy is made up from properties, modules, and comments.

ObVerse properties are value objects as we have met before. They are containers for storing data values and
carry a value from one module to another or between the processor and other tasks in the system.

ObVerse modules are used to perform an operation on one or more input values and calculate a value.
Properties are linked to the inputs and outputs to store these input and output values.

Comments in ObVerse are short pieces of text used to explain ObVerse strategy and make it easier for others
to understand.

The image above shows ObVerse strategy that takes a digital value and adds a delay to it: it has three
properties (the narrow blue items with sharp corners), a module (the blue item with rounded corners), and a
comment in heavier text.

Commander Tutorial 45

 To start the ObVerse Editor, follow these steps:
 Open Configuration, ObVerse Processor 1.
 Open ObVerse to run the ObVerse Editor - this will also associate the editor and the processor. When the

editor starts, it shows pre-defined ObVerse strategy – which contains an input property called Label.

ObVerse Properties
An ObVerse property is a value object and holds a value. When you add a property, you are adding value
storage. You choose the object’s reference within the ObVerse strategy, the type of value it holds, and
whether the property is public (other processes and tasks can access it) or private (its value is only accessible
by other modules within the process). If the property is public you can also specify a label, and an initial value
– the value of the property after initially downloaded, but before other tasks write to it. If the property is
private the label and initial value are not configurable.

The public property shown to the right has been labelled ‘Input’ and has an initial value 1.

The property is drawn as a rectangle, with the initial value shown inside. If the property is public, its label is
shown above the property. A ‘tooltip’ will show the property’s reference and type of value it holds. The short
lines on either side of the property show what connects to (and therefore uses), the property’s value - a left-
hand line may be connected to the single module that calculates and sets the value in the property; a right-
hand line may be connected to one or modules that use the value. In most cases the property will first be
shown red meaning it is not connected to anything (and therefore has an error.)

All ObVerse strategy should have a Label property (L) – a text input property – it is automatically used as a
title for the main ObVerse processor object that appears within the top-level of Commander.

 To set the label of our example ObVerse strategy, follow these steps:
 Hover the cursor over the Label property to display the tooltip for the property - this shows it’s reference

and the type of value associated
 Double-click on the Label property, and set its Initial value to ‘ObVerse Example’

Commander Tutorial 46

 To add a public property to our example ObVerse strategy, follow these steps:
 In the editor window, select Public on the toolbar. Select NoYes as the type of value needed, and the

cursor will change to show a property…
 Click in the editor window (wherever you would like the property to be placed), and the Property

Details window appears. Set the Reference to ‘I1’, Initial value to ‘0’ and the Label to ‘Input’, then
click OK. The initial value of the property is now shown in the property itself. If you have made a
mistake double-click the property again to edit its details.

Property Purpose and Type
When you create a property, you must select the purpose of each property you create:

Purpose Use
Public Public property values allow other tasks to read and write to their values – within ObVerse

the properties have connectors on both the left and right hand side
Private Private property values cannot be seen by other tasks - they can only be seen within this

ObVerse. Commonly used to store a value between modules, they always create their own
reference and label

Each property you create holds a particular type of value – an Off/On value perhaps, or a Text label:

Type Holds
NoYes Binary state: 0 or 1, where 0 means No, 1 means Yes
OffOn Binary state: 0 or 1, where 0 means Off, 1 means On
Num Whole numbers (no decimals)
Float Floating point numbers with decimal points
Obj Object References
ENum Enumerated values 0 to n, where you determine the meaning of each
Text Any text string up to 30 characters
DateTime Date and time
Times List of on-off times
Profile List of time-value pairs

Commander Tutorial 47

ObVerse Modules
An ObVerse module takes inputs, performs an action, and produces outputs – and you can connect these
inputs and outputs to the properties you have created. Modules come in a variety of functions, including
control, logic, maths, timers, object access – the list goes on!

Modules have their inputs connected on the left-hand side, and the outputs on the right. It therefore makes
sense that you place your ObVerse strategy inputs on the left-hand side of the page, and its outputs on the
right-hand side – calculations will therefore occur naturally from left to right.

The module shown to the right is an On-Off-Delay module – which delays a digital signal when it turns on and
off. It takes four inputs (I, N, F, and E) and calculates one output (V). It has its own label above, OODelay.

 To add a module to the ObVerse strategy, follow these steps:
 Select the function of the module you would like to add from the toolbar, in this example we will add a

Counter module so click the Timers button.
 There are several modules which come under the Timers category - select Counter. The cursor will now

change to the shape of a module…
 Click in the editor window to the right of the property we have just added, and the Counter module will

now be added to the window

 To see what a module does, follow these steps:
 Double-click a module on the ObVerse page, in this case we will double-click the Counter module

itself and select Help – and the ObVerse Manual will open showing the help for the Counter module
– you can see from the help that the Counter module takes three inputs, and calculates two outputs
– a count of 0-to-1 changes on the I input, and a count of seconds that the I input is set to On

 Close the documentation when finished, and Cancel the Module Details window

 To add two properties ready for the module’s outputs, follow these steps:
 Click the Public button on the toolbar then select Num from the sub-menu
 The cursor will now change to a property… click in the editor window somewhere to the right of the

Counter module we have just added

Commander Tutorial 48

 The Purpose, Data Type and Reference have already been filled in for us by the editor; change the
Reference to ‘O1’ and Label to ‘Starts’ and click OK

 Repeat the process to add another Public Num property, setting the Reference to ‘O2’ and Label to
‘Seconds’.

Module Types
Here is a list of some of the modules supported by Commander’s ObVerse standard processors. For a
complete list, and to find out how a module is used, refer to the ObVerse Manual: Standard Processor
document.

Maths
Add
Subtract
Multiply
Divide
Modulus-Remainder
Multiple-Add
Average
Minimum
Maximum
Byte-To-Bits
Bits-To-Byte
Num-To-Bit/Bit-To-Num
Random
Rescale
Smooth
Square-Root
Linearize
Usage-Over-Period

Logic
Logical-And
Logical-Or
Logical-Inverse
Equal
Gate
Greater
Less
Logical-Exclusive-Or
Multiple-Logical-And
Multiple-Logical-Or
Select

Object
Alarm
Object-Read
Object-Write

System
System-Information

Control
Feedback
Hysteresis
Lead-Lag
Optimum-Start-Stop
Proportional-Integral-Derivative
Raise-Lower

Timers

Counter
Date-Pulse
Delay
Latch
On-Off-Delay
Pulser
Times-State
Profile-Value

Module Inputs
Each module input – the lines on the left side of the module - may be used in one of several ways: as a
constant value; connected to a property; or connected one of the device’s Essential Values.

If you want the input to remain constant throughout the process, you can set the input to a constant value –
the module will always see the input as the value you specify. When you first insert a module, all its inputs are
set to pre-determined constants.

 To view the label of a module input, follow these steps:
 Move the cursor over the module input, on our example the R input of the Counter module, and a tooltip

will show the label of the R input, Reset, and the current constant value, 0

 To change the constant value of a module input, follow these steps:
 Move the cursor over the module input, on our example the R input of the

Counter module, to see the full label of the R input, Reset, and the current
constant value, 0

 Double-click on the module input, to see the value adjustment window
 Change the value to that required, in our case ‘0’, and press OK

 To connect a module input to a property, follow these steps:
 Move the cursor over the module input, on our example the I input of the

Counter module, to see the full label of the I input, Input, and the current
constant, 0

 Click-and-drag the cursor to the property, in our case the Input (I1) property
we created earlier – the connecting line will appear, and then is drawn
thicker when the link becomes valid. The connecting line will remain, showing the link has been made

Module inputs can only connect to property outputs. They cannot be connected to property inputs or other
modules directly. If you try to connect two modules, the editor will automatically place a private property
between the modules you wish to connect. This property can be edited further if you wish.

Commander Tutorial 50

You can also connect module inputs to properties by right-clicking on the module input, and from the popup-
menu, select Connect to Public or Connect to Private – the list of input or output properties appears, and
you select the one you want.

Each module input can only connect to one property – otherwise it is not clear which value it would use at
which time. However, several different module inputs can connect to a single property and use the value.

If you connect a module input to a property of the wrong type, then the module will attempt to convert
between the two types – for example, if a number input is connected to a text property, the ObVerse
processor will try to extract a numeric value from the start of the text.

Module Outputs
A module’s purpose is to calculate its outputs, which are available via the connectors on the right-hand side
of the module. The outputs from the module usually connect to properties – where the module puts the
actual values. If you do not need a particular output value, you do not connect it to a property.

 To view the label of a module output, follow these steps:
 Move the cursor over the module output, in our example the V of the Counter module, to see the full label

of the V output, Count, appear in the tooltip

 To connect a module output to a property, follow these steps:
 Move the cursor over the module output, on our example the V output of the

Counter module
 Click-and-drag the cursor to the property, in our case the Starts (O1) property – the

connecting line will appear and go thicker when the cursor drags over a valid link –
and release it. The connecting line will remain, showing the link is in place

Module outputs can only connect to properties, and not to other module inputs. If you
try to connect a module output directly to a module input the editor will place a private
property between them in the same way as described earlier.

You can also connect module outputs to properties by right-clicking on the module
output, selecting Connect to Public or Connect to Private from the popup-menu, and
when the list of output properties appears, selecting the property.

Commander Tutorial 51

Each module output can only connect to one property.

If you connect a module output to a property of the wrong type, then the module will attempt to convert
between the two types – for example, if a number output is connected to a NoYes property, the ObVerse
processor will attempt to convert – by checking if the number is zero (i.e. No) or non-zero (i.e. Yes).

Moving an Item
Once your ObVerse strategy is laid out, the next task is to tidy it up - and leave it in a state that you would wish
to find it! By click-and-dragging on the shaded area of a property or a module, you can move the item to
wherever you wish on the page – or even onto another page or sheet (see below).

 To move a module, follow these steps:
 Click-and-drag the shaded area of the Counter module, and position it so that the connecting line from the

Input property to the module is straight – then release the mouse-button

 To move several items at once, follow these steps:
 Click-and-drag a bounding rectangle around the two output properties O1 and O2 to select them – they

will both have thick surrounding lines to show they are selected
 Click-and-drag the shaded area of one of the selected properties to move both together – release when

you have the items where you want them

Commander Tutorial 52

Working with Pages and Sheets
ObVerse strategy can be created over a number of pages, sheets or a combination of both. Pages and sheets
aid the organisation of large amounts of ObVerse.

Click and drag the editor window scroll bars and you will see dotted lines spaced over the entire window
space – these show boundaries between A4 landscape pages. Connection lines between modules and
properties over different pages will be shown as long as the input lies to the right of an output.

The Sheet tabs in the top-left hand corner of the editor window show which sheets are currently available,
the highlighted tab shows which sheet is currently being edited in the main window. Modules and properties
can be connected between sheets in the same way as between pages, although the connections are
displayed differently: When a connection is made between a module and a property over different sheets the
reference of the connected module or property will be shown on the input or output.

 To add another sheet to the editor window, follow these steps:
 Click on the ‘+’ icon next to the latest sheet tab, the next numbered sheet will now be added

Adding Comments
Adding comments to ObVerse strategy makes it easier for others (or even yourself) to see what you were
trying to do with the ObVerse.

ObVerse comments come in two sizes, regular and title.

 To add a comment to our ObVerse strategy, follow these steps:
 Right-click on the screen above the module, and select Insert Comment... from the

popup menu
 In the Comment Text, enter the comment ‘Run Time Calculation’, select Show as title,

and press OK – the comment appears in bold text

 Again, you can move the comment by click-and-dragging it to where you wish.

Commander Tutorial 53

Saving ObVerse to Disk
After changing ObVerse strategy, you can save a copy to disk, for backup purposes.

 To save the current ObVerse strategy, follow these steps:
 From the editor menu, select File > Save or click the disk button on the toolbar
 If you have never given the ObVerse strategy a filename, Save will ask you to specify one. For the File

name, enter ‘ObVerse Example’ and click Save

The ObVerse will be saved to disk in the ‘TypeInfo\ObVerse’ folder within the ObSys Application Data folder.

The folder in which the ObVerse file is saved is related to the ObVerse type that is reported by the ObVerse
when it is scanned – and is shown in the title bar of the editor window. If the window title bar of the editor
shows xxxx\yyyy, then the ObVerse file will be stored in ‘TypeInfo\xxxx\yyyy.obv’ within the ObSys Application
Data folder.

Commander Tutorial 54

ObVerse Processors
Now you have written your first chunk of ObVerse strategy, you need to practice running and watching, and
see the way other tasks within Commander can access the properties within the ObVerse processor.

Running your ObVerse Strategy in Processor
While you are editing ObVerse strategy, the ObVerse processor continues to run the strategy
already in it (even if it has none). You need to put the new strategy in the processor to allow it to
run.

 To put the new ObVerse strategy into the processor and set it running, follow these steps:
 On the editor toolbar, select Run. When asked ‘Are you sure…’, click Yes
 If the file needs saving, you will be asked ‘Do you want to save’, press Yes – after the file has been saved it

will be put in the processor and will run automatically

When the editor puts strategy into the processor, it sends it an item at a time, and so you might see a
downloaded item count. This depends on the size of the strategy, and the speed of the link between the
editor and the processor.

Manually uploading ObVerse Strategy from the Processor
After you have downloaded and tested the strategy, the editor may be closed. Remember that the ObVerse
strategy was stored in two places – a file on the PC and in the ObVerse Processor.

When an ObVerse processor object is selected in Commander, the editor window opens and automatically
displays the strategy which is running in the processor. This is worth bearing in mind if you lose the original
ObVerse file, or you need to see the running strategy within a processor.

 To manually upload the ObVerse strategy currently running in the processor:
 From the editor window, select Processor from the dropdown menu then click Get ObVerse to display the

last strategy which was downloaded into the processor.

Commander Tutorial 55

Accessing Property Values from Elsewhere
Once the ObVerse strategy is running, the public properties (not the
private properties) become available within Commander as value objects.
The ObVerse processor itself appears as a container object in the top-
level of Commander, and the input and output properties appear within
that container object.

Other tasks within Commander can read from and write to the public
properties - for example, transfers.

 To modify an input property using ObView, follow these steps:
 Navigate to the top level of Commander
 You may need to Scan to see the new ObVerse Example objects added

by the ObVerse processor
 Open ObVerse Example – again you may need to Scan to see its sub-objects
 Set Input by clicking the object’s value and selecting ‘Yes’– the property is changed, and the ObVerse

strategy continues counting seconds – ObView will normally refresh the values every 5 minutes, so you will
need to press Refresh to see the values changing more regularly

Commander Tutorial 56

Watching ObVerse Run
After downloading the ObVerse strategy, you can use the editor to watch what is happening in your ObVerse
processor - the editor shows the live data from each property. When watching, it is only possible to adjust
property values; objects cannot be moved, added, or deleted. Be careful adjusting output and private
property values as they will normally be overwritten when modules recalculate.

 To start Watching, follow these steps:
 From the editor window, select the Watch button on the toolbar

 To see a current value, if the value is too large, follow these steps:
 Move the cursor over the property, and the tooltip will show the

full Current Value

 To change an property value, follow these steps:
 Double-click on the property, and the Value dialog box appears.
 When asked ‘Are you sure…’ select Yes
 Change the value to ‘1’, and press Ok – the value changes, and the

editor shows how that value affects the strategy - in our case the
Starts property increases, and the Seconds counter starts to rise

 To stop Watching, follow these steps:
 From the editor window, click Watch on the toolbar a second time

Note: Watching ObVerse strategy running within a processor can put stress on the communications path
between the editor and the processor, and so should be used only when necessary.

Commander Tutorial 57

Informing...

Commander Tutorial 58

Simple Web Pages
Once Commander is on a LAN, its built-in web server (if enabled) automatically becomes available to others
on the LAN. Commander will serve the Essential Data pages
and objects, showing the values it last received, which users
can adjust.

 To view Commander’s web pages, follow these steps:
 Start your preferred web-browser on your engineering PC

– this must be on the same network if you have been
engineering

 In the address bar, enter the IP address of the
Commander - in this tutorial we set the Commander to
‘192.168.2.150’ - and press Enter, and the Commander’s
web page appears

The website is arranged into the areas Overview – showing
summary information; Values – to view and adjust values
from Essential Data; Events – from Alarm History (we will cover this later in the tutorial); and Device
information.

Commander builds simple responsive html pages, and so you can use any modern browser, including those
on mobile devices.

It is possible to enable and disable certain web pages – this needs knowledge of Commander’s security
features.

Commander Tutorial 59

Controlling Access with the Security
Once Commander is on a LAN, you must start to consider security – to control who can and who cannot view
and modify values.

North products (including Commander and ObSys) use security databases to authenticate users; remote
‘areas’ ask a particular security database for information about a user when that user requires access.

Imagine a virtual ‘door’. It works as follows:

• When a user wishes to enter an ‘area’, he/she presents ID (and optional password) to the ‘door’
• The door encrypts the credentials, passes them to the security database, asking for the user’s

privileges
• The Security Server returns the user’s name and current privilege levels
• The door decides whether the user can enter the area, and ‘opens’ if the user is allowed

Rather than just one privilege level, security databases hold privilege levels in eight different areas for each
user – you must tell the door which area it controls access to, and what the minimum privilege level the user
must have in that area before he can pass. This means that a user can have lots of privilege in one area, and
yet only a little in another.

Commander’s security database is called Security Server, and by default it has no users or groups set up.

Commander Tutorial 60

Security Areas and Levels
 Within each security system there are eight security areas. Security areas could be actual areas in a building,
but are normally functional areas: for example, ‘environmental control’ and ‘North engineering’ areas would
allow a user to have different privileges in controlling set points and engineering Commanders.

There can be many doors on a system. Each lock controls access to some functionality, and the engineer
assigns each door to one of the eight areas. The engineer also assigns the minimum privilege level needed
within that area - zero means no privileges required - seven is the highest security.

The engineer gives each user a privilege level in each of the eight areas. The level is in the range zero to seven,
seven being the most powerful. When a user wishes to pass a door, his/her privilege level in the door’s area is
checked against the minimum required for that area – and then either allowed to pass or rejected.

The engineer must decide the use of the eight areas. The engineer must also decide the power of the privilege
levels. Most systems use only a few levels per area: 0=None, 1=Guest, 2=User, 7=Administrator.

As an example, imagine a door into a secure room. The secure room is in area 1. The door needs a user to
have a minimum privilege level of 6 in area 1 before it will open. The door has a card-reader that checks users
with a security database before unlocking the door. User A has privilege level 7 in area 1 – she can open the
door. User B has privilege level 5 in area 1 – he cannot open the door. User C has privilege level 1 in area 1 –
she cannot open the door.

The example continues: on the same Commander, a temperature set point can be viewed by all, but users
need a minimum privilege level of 2 in area 1 to adjust – therefore Users A and B can adjust the set point, but
User C cannot.

Commander Tutorial 61

Enabling Users
As well as holding the user’s own privilege level in each of eight areas, the security
database holds the user’s name, and whether the user is enabled – if disabled, the
user will never be validated.

Each user can also be given start and end dates – if these are set up, the security
database disables the user automatically if today’s date is not within the range
specified.

You may make a user a member of up to three groups. Each group has an enable
object, along with group privilege levels for the eight areas. The privilege levels for
the user will now be an amalgamation of any groups he is a member of, along with
his own privilege levels.

Each user has a UserID (or card number) and a Password – together these form a
coded token. It is the coded token that is passed around a system – the password
is never seen.

Whenever an item checks a coded token with the security database, the database
remembers the date and time of the successful validation – this allows you to see
when the user was last validated.

Commander Tutorial 62

Specifying Access Security
Once you have added users to the database, the only thing left is to assign the area
and minimum privilege level to control access to the protected features.

An item that supports security will have one or more Access Security objects, each
of which has a two-digit value. Each object controls the access to a feature - such as
seeing the value, or adjusting the value, or viewing the page. The two-digit value is
made up of the area digit (1-8), followed by the minimum privilege level (1-7) – for
example, if the minimum privilege level is 6 in area 2, then the two-digit value is 26.
If the value is 00, then no security checks are made.

Commander Tutorial 63

Adding Users
Each security database has extra security to protect against any ‘back-door’ ObView access – called the Editor
Password. You must enter this single password into the Editor Sign In object before any major changes can be
made to the user information. Once signed in, you can change the Editor Password to something more
memorable.

By default, the Editor Password is blank. We recommend you change this!

 To enable Editor Access, follow these steps:
 Go to the top level of Commander, and open Security Server
 Set Editor Sign In to the current Editor Password – the default setting for this is blank! You can check

editing is allowed – the Editor Access Allowed object will show ‘Yes’

 To add a low-level user, follow these steps:
 Check the Editor Access Allowed object reads ‘Yes’, and open a free User entry – we will use User 2
 Set Name to ‘Basic User’, Enable to ‘Yes’, UserID to ‘BU’, and Password to a memorable phrase
 Set Privilege Level in Area 3 to ‘7’ – this is the one area where this user has power

 To add a medium-level user, follow these steps:
 Check that the Editor Access Allowed object reads ‘Yes’, and navigate to a free User entry – we will use

User 3
 Set Name to ‘Medium User’, Enable to ‘Yes’, UserID to ‘MU’, and Password to a memorable phrase
 Set Privilege Level in Area 1 to ‘7’, and Privilege Level in Area 2 to ‘7’
 Set Privilege Level in Area 3 to ‘4’ – this is the one area where this user has only medium power

Summary of User and Privileges set
up so far in the tutorial: User Area1 Area2 Area3 Area4 Area7 Area6 Area7 Area8

BU 0 0 7 0 0 0 0 0
MU 7 7 4 0 0 0 0 0

Commander Tutorial 64

Enabling Access Security on Web Pages
Now you have some users, you can enable Web Server access security, which will force the web server to
request the UserID and password from the user (done within the user’s browser).

 To enable general security on Commander’s web server, follow these steps:
 Navigate to Configuration, Web Server, Security
 Set Require User Sign-in to ‘Yes’. This means a User’s details are checked against the local Security Server

when accessing values on the local Web Server.
 Test by using your browser to view the Commander’s web page – you should need to sign in now – use the

username ‘MU’ with password set earlier.

 To sign out of Commander and get your browser to forget the UserID it is remembering, follow these steps:
 On the web page in the browser, select the user icon at the top right of the page, this will navigate to the

Profile page and show the Change password and the Sign out options
 Select Sign Out, which ends your session

You should now be able to sign in as either ‘BU’ (basic user) or ‘MU’ (medium level user).

Commander Tutorial 65

Access Security in Essential Data
You can control who can view Essential Data pages within their browser, and control who can adjust each
adjustable object.

 To set the viewing Access Security on an Essential Data page, follow these steps:
 Open Configuration, Essential Data, and then the page – we will use Zip Input 2
 Set Access Security to ‘31’ – this means that our example users ‘BU’ and ‘MU’ can view the page

 To set the adjusting Access Security on an Essential Data object, follow these steps:
 Open the required object – we will use Test Changes, object Limited – an adjustable value we set up early
 Set Access Security to ‘35’ – this means that our example user ‘BU’, who has level 7 in area 3 can adjust the

value, but user ‘MU’ who has level 4 in area 3 cannot adjust the value

Once Essential Data pages have Access Security set, the web server builds the left-hand menu for the current
user – not showing pages that the user cannot access with his/her privileges.

Summary of Web Server access set–up
so far in the tutorial:

Action Access Level User ‘BU’ User ‘MU’
View Calendar 11 No Yes
Edit Calendar 14 No Yes
View Page 1 31 Yes Yes
Adjust Page 2 Object 1 35 Yes No

Commander Tutorial 66

Alarms
Normally, when a user or task wishes to know the value of an object, say a digital input, they can read it. This
method works well when the values are needed only occasionally.

There are times, however, when instead of a user monitoring a value, it is better that the object tells the user
when it changes. North call these object-to-user messages ‘alarms’.

Within any North system, alarms have the same basic format, made up of six pieces of information:

• System Name – the system name assigned by the engineer
• Point Name – the unique point name within the System
• Condition – the condition or state that the Point is now at
• Priority – the importance of the alarm message – this is set by the engineer, or by the system
• Date – the date that the Point went to the Condition
• Time – the time that the Point went to the Condition

When alarms are sent between object and user, they are sent in text form, with the | separating the different
parts.

The System Name relates to the system that sent the alarm. It could be a Commander Label if the
Commander generated the alarm. It could be a system label of an interface running within Commander, say a
fire alarm system.

The Point Name is normally generated by the system, although the engineer might be able to specify some
point names.

The Condition informs the user of the new condition the Point is
in. Each time the condition changes, an alarm is sent.

The Priority is a single digit, in the range 1 (the highest priority), to
9 (the lowest), and is sometimes specified by the engineer.
Although particular priorities have no official meanings, the table
(shown right) shows how they are generally used.

The Date and Time refer to the instant the condition occurred (if the time was known – some objects do not
know the actual time).

Priority Meaning Default
Colour

1 Life-critical – someone may get injured Red
2 Property-critical – something may be

destroyed
Orange

3 Important – needs some action Yellow
4 to 9 Information only Blue/Grey

Commander Tutorial 67

Generation and Delivery
Alarms must travel from the object that generated them to the user. The easy part is the generation. The most
complex part is the display part because each user wants the messages delivered in a different way, to
different places.

Commander can help with the generation. If the external systems cannot send alarms, Essential Data has
some features which can generate alarms itself.

Commander delivers all alarms, including those generated by Essential Data, in the same way.

By default, all alarms are sent to the Alarm Delivery task, which will deliver them onwards, perhaps based on
priority and/or content, to several destinations.

One destination, which is set up by default, is the Alarm History. The engineer can set up other destinations in
other places, including in other Commanders and ObSys software, emails messages, SMS, and printers.

Alarm History
Commander has an Alarm History, to which the Alarm Delivery module sends alarms. The Alarm History is a
rolling record of the last 100 or so alarms. This provides a simple way of testing alarms, as well as a record.

 To view the alarm history using a web browser, follow these steps:
 Open the Commander’s web page in your browser. The top page may show the last few alarms that have

occurred recently
 Select Alarms from the menu on the left
 Select the order that the server sorts the alarms using the Change Order drop-down box
 Press Clear List to wipe all alarms from the history

Alarms that are put into the Alarm History are also sent to Commander Hub, if enabled within the
Commander.

Commander Tutorial 68

Generating Alarms using Essential Data
Some external systems connected to Commander send alarms or events. Fire Alarm systems, originally
designed to print alarms, have made alarm sending the main part of the link to North. Other systems based
more on values and states, like Modbus, never send alarms.

Essential Data can generate alarms on behalf of any system that cannot send its own alarm messages. As
seen before, Essential Data is set up to read the values of external systems; by setting up a value high and low
limits, Essential Data can also monitor the value being read, and work out when the value is ‘out-of-limits’.

 To set up an Essential Data object to generate alarms, follow these steps:
 Open Configuration, Essential Data, Page 1, Object 2
 Set Label to ‘Closed’, Type to ‘NoYes’, and Current Value to ‘0’
 Set Value Low Limit to ‘0’, and Value High Limit to ‘0.5’ – when the value is 0 it is ok, when it is 1 it goes

out-of-limits
 Set Remote Object to ‘S1.M0.DI2.S’ – i.e. the state of the digital input
 Set Remote Rate to ‘5 seconds’ – the state will be collected every 5 seconds
 Set Remote Action to ‘Read’ – the object will be read – and the Current Value should change to the correct

state
 Switch the digital input and leave for 5 seconds. The Value Alarm State will change to reflect whether the

Current Value is within limits – but no actual alarm is sent because the Alarm Priority is 0

 To set the Alarm Priority, and therefore enable sending of alarms, follow these steps:
 Set Alarm Enable/Priority to ‘3’ – this is a non-critical alarm
 Switch the digital input, to change the Value Alarm State, and cause the alarm to be sent to the Alarm

Delivery, which delivers the alarm to the Alarm History,
 On the web browser, view the Commander’s Alarms page to see the alarm

Commander Tutorial 69

Generating Alarms from Zip Modules
Using a Zip system as an example external system, you can see how alarms from Zip work. The ZipMaster
driver checks communications with the Zip modules and can generate alarms when a module stops replying
to requests.

 To set up a Zip Module communications alarm, follow these steps:
 Go to the top level of Commander, and open Zip System, M7002A v10 (M0), Module Information
 Set Alarm Priority to ‘2’ – module alarm messages, including communication alarms, are now enabled
 Disconnect the RS232 cable from the Zip NC12B – the modules will flash to indicate ‘loss of comms’, and

the alarm will be generated, and be delivered to the alarm history – you can see this on the Alarms web
page.

Routing and Filtering
By default, Commander delivers all alarms to one destination – the alarm history.

You can use Alarm Delivery to filter alarms based on the alarm priority or contents:
Alarm Delivery will only pass alarms that meet your criteria; these are sent onwards
to the destination.

 To send only alarms with priority 1 to 3 to the Alarm History, follow these steps:
 Go to the top level of Commander, and open Alarm Delivery, Destination 1
 Set High Priority to ‘1’, and Low Priority to ‘3’

 To send only alarms that contain the word ‘Zip’ to the Alarm History, follow these
steps:

 Set Comparison Method to ‘Contains’, and Comparison String 1 to ‘Zip’ –
remember that the comparison string is case-sensitive

Commander Tutorial 70

Other Alarm Destinations
Below are listed other possible alarm destinations – this document only describes them, as they require
additional equipment or knowledge that you might not have to hand.

Email
North’s AlmEmail driver is standard within Commander. Once set up with the IP address of an SMTP server,
alarms can be sent to one of several groups of people using either standard or HTML emails. If users have
their corporate emails sent to mobile devices, then alarms will be passed to remote engineers.

Printer
North’s Printer driver supports alarm printing to a serial printer – this type of printer will print single lines,
rather that the whole page printers, and therefore can provide not only a way of seeing alarms as they occur,
but also a paper record of all alarms.

The Printer driver supports the ESC/P Epson colour printer codes.

SMS
North’s GsmSms driver connects to a SIM-enabled GSM modem. GSM users are added to the driver setup, and
alarms can then be sent to any of the users, or to an ‘on-call’ user. The alarm then arrives at the users GSM
phone as a text message.

The GsmSms driver also supports bi-directional communications using text messages, allowing a user to both
request current information, as well as change certain objects.

Other North devices
ObSys supports Alarm Store, where alarms are held waiting user silencing and acknowledgement. Both also
support alarm translation, and re-prioritisation. North’s Alarm Manager application can be used to view
alarms from several Alarm Stores, and provide a very easy-to-use, powerful interface.

Commander Tutorial 71

Telnet
Sometimes it is necessary to talk to Commander without using web pages – Commander has a Telnet server
that you can enable. It can provide simple text-based access to any object values within, or outside,
Commander. By default, Telnet is disabled, but you can enable Telnet, and give it a ‘user name’, to act as a
simple password.

When Commander’s DEFAULTIP [was previously PROGRAM] switch is set ON, Telnet is always enabled, with a
user name of PROGRAM.

Commander supports several services within the Telnet session – Query/Response, and IP-Configuration.

 To enable Telnet client on Windows Vista and later, follow these steps:
 From Windows Control Panel, select Programs (or Programs and Features in Vista) then Turn Windows

features on or off
 Select the check box next to Telnet Client to enable it, then click OK

 To enable Commander’s Telnet service, follow these steps:
 Open Configuration, Telnet Setup
 Set User to ‘TTEST’ – up to 7 letters only
 Set Telnet Enabled to ‘Yes’

IP Configuration
The Telnet client application runs within the Windows Command Prompt window. TELNET.EXE takes one
parameter – the IP address of the Telnet server.

 To connect to Commander’s IP Configuration telnet service, follow these steps:
 Within Command Prompt window, type the command line:

telnet 192.168.2.150
 At the User: prompt, type ‘TTEST’, and press ENTER
 At the Service: prompt, type ‘ipc’, and press ENTER – Commander responds with the current IP

configuration

Commander Tutorial 72

 At the Service prompt, press ENTER – this means you have no more service requirements – and
Commander closes the telnet session

Query/Response
Commander’s Telnet server supports a simple query/response protocol. You can use this manually or it can
be used from an external device.

 To view the use the Query/Response service, follow these steps:
 Within Command Prompt window, type the command line:

telnet 192.168.2.150
 At the User: prompt, type ‘TTEST’, and press ENTER
 At the Service: prompt, type ‘qr’, and press ENTER – this enters the Query-Response

service
 At the query prompt Q: type ‘PL’ and press ENTER – this asks for the value of the

Commander object PL – the Commander responds ‘R:<value>’, and a new query prompt
 At the prompt, type ‘O.PI.RC’ and press Enter – this asks for Configuration-Platform Information – Reset

Count. Commander sends the response with the current Reset Count
 At the prompt, type ‘O.PI.RC=0’ and press enter – this asks for the same value to be adjusted to 0
 At the prompt, type ‘O.PI.RC’ and press Enter – to see the new value
 At the prompt, press ENTER – this states that you have no more queries to make
 At the Service prompt, press ENTER – this states you have no more service requirements – and

Commander closes the telnet session

Notice that you can both read and adjust values.

Commander Tutorial 73

Default Configuration
Commander’s firmware and CDMs are held in permanent memory – flash memory. This is updated when
CDMs are updated.

Commander’s configuration is held in battery-backed memory - if the battery expires (or is removed) when
the external power is removed, the configuration is lost.

To counter this loss, it is possible to save the current configuration to permanent memory. Once saved,
whenever the configuration in battery-backed memory is lost, it is reloaded from the default configuration in
permanent memory.

 To save the current configuration as the default configuration, follow these steps:
 Change the internal PROGRAM switch to ON
 Re-power Commander – the MODE LED will flash, to show Commander is in Program mode
 Using ObView, open Configuration, Platform Information, Default Configuration.
 Set Save Configuration As to ‘DF1’ to cause the configuration to be written to permanent memory.

Commander will light the FLASH LED and save the configuration (which takes 20-30 seconds), then restart.
Once online, Saved Configuration shows the label ‘DF1’

 To reset the Default Configuration to factory settings (ie. blank settings), follow these steps:
 Set the Save Configuration As to ‘blank’ (case sensitive) – this again takes 20-30 seconds, after which time

the Saved Configuration shows an empty value (‘’).

Commander Tutorial 74

Commander Hub
Introduced with Commander version dated 25/08/21, Commander Hub is part of North’s cloud services.

When the link is enabled in Commander, all Essential Data values and Alarm History messages are sent to
Commander Hub (assuming a connection to the Internet is available).

By enabling the link to Commander Hub, you agree to have read and understand the Terms of Use and Privacy
Policy for Commander Hub.

 To enable a link from your Commander to Commander Hub, follow these steps:
 Using ObView, open Configuration, Commander Hub
 Set Enable Link to ‘Yes’
 Wait for Registration Code to update, this may take up to 15 minutes after you have enabled the link
 You will need the Serial Number and Registration Code to add the device to My Hub.

 To add your Commander to My Hub, follow these steps:
 Visit www.cmdrhub.com
 If you do not already have an account, you will need to register
 From the My Hub page, select Options, Add device and complete the

serial number and registration code.

https://www.cmdrhub.com/terms
https://www.cmdrhub.com/privacy
https://www.cmdrhub.com/privacy
http://www.cmdrhub.com/

Commander Tutorial 75

Updating Commander
When supplied, the Commander hardware contains the main system firmware, along with several popular
North drivers. North provide other less-used drivers in separate CDM files, but you need to install these
drivers before you can use them. North also update the drivers and CDM files, and you may need to install
these.

You can set Commander to update its firmware from North’s cloud-services if it has Internet access (and
therefore not in DEFAULTIP mode), or install from a PC using TFTP.

Before updating Commander’s firmware, the Commander must be in PROGRAM mode. We also recommend
taking a complete backup of the Commander’s configuration before updating.

Cloud Update
If Commander has Internet access, it can be instructed to check and update its firmware to the latest released
version available from North’s cloud-based servers.

Two different update options are available: the quickest is ‘in use only’, and this updates the system firmware
and drivers currently in use; the ‘factory’ option updates all the factory-installed software.

To add a driver that has not been previously installed, add the driver name to an available Interface before
updating the ‘in use’ firmware.

Updating Commander’s Firmware

 To update Commander using North’s cloud service, follow these steps:
 Power Commander OFF, and change the internal switch PROGRAM to ON, and re-power Commander and it

will start working in Program mode – the MODE LED will flash, to show Commander is in Program mode
 Using ObView, open Configuration, Platform Information, Software Cloud Update
 Set Check & Update Software to either ‘In use only’ or ‘All factory installed’ to have Commander update

the firmware. DO NOT REMOVE THE POWER during this operation.
 The Progress object shows how the update is progressing. The Commander may reset itself several times

during this time, and you may have to press ‘Refresh’ to see the latest progress. Once finished, the Check &
Update Software object returns to ‘Off’, and the Progress value shows how many files were updated.

Commander Tutorial 76

TFTP Update
If Commander cannot update itself, because it is in DEFAULTIP mode or has no Internet connection,
Commander supports the Trivial File Transfer Protocol (TFTP).

What is TFTP?

TFTP is one of the standard IP protocols. TFTP requires a client (your PC) and a server (Commander).

 To enable TFTP client on Windows, follow these steps:
 From Windows Control Panel, select Programs then Turn Windows features on or off
 Select the check box next to TFTP Client to enable it, then click OK

The TFTP client is a Windows command line utility, with the following format:

 TFTP –i <serverIPaddr> put "<filename>"
where <serverIPaddr> is the actual IP address of the Commander, and <filename> is the file name to transfer.

Locating the CDM Files

North distributes drivers for Commander in CDM files – these files are made to work in certain areas of
Commander’s memory – called banks. You can only load one CDM file per bank, so you must choose which
CDM to load in each bank.

ObSys setup installs CDM files within the CDMs folder of the ObSys Program Files folder – for example
“C:\Program Files (x86)\North Building Technologies\ObSys\CDMs”.

Installing or Updating a CDM

Commander only opens its TFTP server port when Program mode is physically enabled using the PROGRAM
switch – this means that normally Commander cannot be modified accidentally or maliciously.

Commander Tutorial 77

 To load a CDM to Commander using your TFTP client, follow these steps:
 Power Commander OFF, and change the internal switch PROGRAM to ON, and re-power Commander and it

will start working in Program mode – it will enable its TFTP server – the MODE LED will flash, to show
Commander is in Program mode

 On your PC, run the Command window, cmd.exe
 At the command prompt, type the following to change to the CDMs folder:

CD "\Program Files (x86)\North Building Technologies\ObSys\CDMs"
 Type the TFTP command to send the file, for example:

TFTP –i 192.168.2.150 put "Bank7 ZitonZP v11 141215.cdm"
 Once Commander has received and checked the file, Commander will write the CDM to flash memory

(showing its FLASHWRITE LED), and when complete, will restart, and the MODE LED will flash to show it is
in Program mode again

 Close your Command window, then power Commander OFF, and change the internal PROGRAM switch to
OFF, and re-power Commander, and it will start working in RUN mode – it will disable its TFTP server

Updating the Main Commander System Firmware

If you need to update the main Commander firmware itself, download three files: ‘CmdrBase.bin’ and
‘CmdrExt.bin’, and ‘Bank 1 All-North.cdm’.

You load these files individually using TFTP in the same way as the CDM files.

Pre-Installed CDMs
Below is a list of the factory installed CDMs installed in Commander. Some CDMs contain several drivers. This
list is subject to change.

Bank CDM
1 ZipMaster, Compass, plus system modules
2 Modbus
3 TrendIQ
4 BACnetIP
9 AlmEmail, GSMSMS, SNMPTrap, TextOut, Printer
10 Galaxy

Commander Tutorial 78

Bank CDM
12 APC, GeistPDU, PowerOne
17 ExtraData
18 DataSync, JSONData, JSONNotify, MQTT, SG
19 AlmSet, DeviceCheck, StateCheck, CsvRead, XmlRead
20 Advanced4000, ColtOPV, Morley, Notifier, Protec, ZitonZP
21 DALI, Helvar, iLight, LutronQS, Luxmate, PhilipsLM
22 Carel, Daikin, MitsubishiG50, PanasonicVRF, CCNDP2, MitsCity
23 EIB, KNXIP, LonSLTA, Mbus
24 DraytonWiser, EnOcean, HeatmiserNeo, LegrandMyHome
25 Meaco, Hue, Kentec, KentecTaktis

Zero Interface Licence Drivers
Most drivers for interfacing to other external systems need an Interface Licence (IL) to before they will start.
However, the following drivers require zero Interface Licences:

ZipMaster Compass Modbus BACnetIP GSMSMS
 JSONData SnmpTrap SG DeviceCheck AlmSet

Commander Tutorial 79

Internal Switch Summary

PROGRAM switch
When the internal PROGRAM switch is set ON, and Commander re-powered, the Commander enters Program
mode, where the following happens:

• Commander enables the TFTP service, allowing you to download new/updated CDMs and base code
• Saving the Commander’s current configuration as the Default Configuration becomes possible
• Commander can Software Cloud Update, if triggered
• Interface Licences can be added
• If the Web server is enabled and within five minutes after power-up, then changing network settings

and Commander Hub link are enabled.

DEFAULTIP Switch
When the internal DEFAULTIP switch is set ON, Commander automatically restarts and enters Default-IP
mode, where the following happens:

• Commander operates with a static IP address of 192.168.192.167, and network mask of 255.255.255.0
• Within Commander’s North IP Devices, the Local Encryption Key is disabled. This enables an engineer

to access the Commander without knowledge of this security setting (as long as they have physical
access to the Commander). When the DEFAULTIP switch is turned off, the Local Encryption Key is
again required for access.

• Commander enables the Telnet service, with a user ‘PROGRAM’, allows access to both ‘qr’ service and
‘ipc’ service

• Commander enables the Web Server, no sign-in is required (regardless of security), allowing access to
all web pages, and adjustment of any adjustable values

• Changing network settings and Commander Hub link on the Web server is enabled.

Commander Tutorial 80

Next Steps
In this tutorial you have learnt about North’s controller, Commander. You have powered-on Commander and
used ObSys software to configure it. Following the steps, you have also configured the range of integration
and control features available.

Next, learn more about North’s Zip input-output system by following the steps in the Zip Tutorial.

If you require help, contact support on 01273 694422 or visit www.northbt.com/support

http://www.northbt.com/support

Commander Tutorial 81

This document is subject to change without notice and does not
represent any commitment by North Building Technologies Ltd.

ObSys, Commander and Zip are trademarks of North Building
Technologies Ltd. All other trademarks are property of their respective
owners.

© Copyright 2022 North Building Technologies Limited.

Author: TM
Checked by: JF

Document issued 21/09/2022.

North Building Technologies Ltd
+44 (0) 1273 694422
support@northbt.com
www.northbt.com

	What is Commander?
	Interface Technology
	Programmable Control
	Information Services

	Commander Hardware
	Power and Connectors
	LEDs
	Battery and Switches

	Installing ObSys, the Engineering Software
	Starting Installation
	ObSys Setup
	ObServer, the Communications Router
	ObView, the Object Viewer

	Basic Commander Settings
	Engineering Commander at a known IP address
	Changing Commander’s Label
	Setting Commander’s Clock
	Resetting Commander

	ObView Window
	Menu
	Toolbar Area
	Main Area

	Interfacing Commander to other Systems
	Interface Licences within Commander
	Starting an Interface
	Stopping an Interface
	Assembling the Training Pack Zip components
	Interface Set up
	The External System

	What are Objects?
	Value Objects
	Container Objects
	Object References
	Relative References

	Transferring Values
	Reading from the Source Object
	Writing to the Destination Object

	What is Essential Data?
	Pages and Objects
	Simple Data Storage
	Data Collection
	Data Distribution
	Adjusting Object Values
	Limiting Adjustments
	Simply Writing?

	Setting Commander’s LAN Port
	Connecting Commander to your LAN
	Start Engineering Commander on a LAN
	Communicating between Commanders
	BACnet/IP and ModbusTCP

	Saving your changes to a Backup
	Loading from a Backup
	Time Control
	The Calendar and Today’s Day-Type
	Timers
	Profilers

	Introduction to ObVerse Programming
	ObVerse Basics
	ObVerse Properties
	Property Purpose and Type
	ObVerse Modules
	Module Types
	Module Inputs
	Module Outputs
	Moving an Item
	Working with Pages and Sheets
	Adding Comments
	Saving ObVerse to Disk

	ObVerse Processors
	Running your ObVerse Strategy in Processor
	Manually uploading ObVerse Strategy from the Processor
	Accessing Property Values from Elsewhere
	Watching ObVerse Run

	Simple Web Pages
	Controlling Access with the Security
	Security Areas and Levels
	Enabling Users
	Specifying Access Security
	Adding Users
	Enabling Access Security on Web Pages
	Access Security in Essential Data

	Alarms
	Generation and Delivery
	Alarm History
	Generating Alarms using Essential Data
	Generating Alarms from Zip Modules
	Routing and Filtering

	Other Alarm Destinations
	Email
	Printer
	SMS
	Other North devices

	Telnet
	IP Configuration
	Query/Response

	Default Configuration
	Commander Hub
	Updating Commander
	Cloud Update
	Updating Commander’s Firmware

	TFTP Update
	What is TFTP?
	Locating the CDM Files
	Installing or Updating a CDM
	Updating the Main Commander System Firmware

	Pre-Installed CDMs
	Zero Interface Licence Drivers

	Internal Switch Summary
	PROGRAM switch
	DEFAULTIP Switch

