

ObVerse Manual:
Standard Processor
ObVerse is North’s strategy language and is available within Commander and ObSys. It allows an
engineer to define how equipment should link and interoperate.

This manual covers the features available in ObvProcessor within Commander and ObSys – the
standard processor.

This document relates to ObVerse Processor version 1.1 dated August 2023.

Please read the Commander Tutorial or ObSys Tutorial alongside this document, available from
www.northbt.com

http://www.northbt.com/

ObVerse Manual: Standard Processor 2

Contents

What is ObVerse? .. 4
Processors ... 4
Properties, Modules, and Comments ... 4
Editing ObVerse .. 5

Quick Start .. 6
Edit ObVerse in a Processor .. 6

Processors ... 7
Standard Processors... 7
Advanced Processors .. 7

Properties .. 8
Private Properties ... 8
Public Properties .. 8
Type Conversion ... 9

Reserved Public Properties .. 10

Modules ... 11
Inputs .. 11
Outputs ... 11

Comments ... 12

Direct Access to Essential Values ... 13

Property Types in Standard Processors ... 14
ENum ... 15
Float .. 16
NoYes ... 17
Num ... 18
Obj ... 19
OffOn ... 20
Text .. 21
Times ... 22
Profile .. 23
DateTime ... 24

Module Types .. 25
Add .. 26
Alarm ... 27
Average ... 29
Bits-To-Byte .. 30
Bit-To-Num ... 32
Byte-To-Bits .. 34
Counter ... 36
Date-Pulse ... 38
Divide .. 40
Equal ... 41
Feedback ... 42
Gate ... 44
Greater .. 45
Hysteresis .. 46
Last-Change .. 48
Latch .. 50
Lead-Lag.. 52
Less .. 55

ObVerse Manual: Standard Processor 3

Linearize .. 56
Logical-And ... 59
Logical-Inverse .. 60
Logical-Exclusive-Or ... 61
Logical-Or .. 62
Maximum .. 63
Minimum ... 64
Modulus-Remainder ... 65
Multiple-Add ... 66
Multiple-Logical-And .. 67
Multiple-Logical-Or ... 68
Multiply ... 69
Num-To-Bit ... 70
Object-Read .. 72
Object-Write .. 74
On-Off-Delay ... 76
Optimum-Start-Stop .. 78
Profile-Value.. 81
Proportional-Integral-Derivative.. 83
Pulser .. 86
Raise-Lower .. 88
Random ... 90
Rescale .. 91
Select ... 92
Smooth .. 94
Square-Root .. 96
Subtract .. 97
System-Information.. 98
Text-Equal ... 100
Text-In-Text ... 101
Text-Join ... 102
Text-Length ... 103
Text-Split ... 104
Times-State ... 105
Usage-Over-Period ... 107

ObVerse Standard Processor Versions ... 109

ObVerse Manual: Standard Processor 4

What is ObVerse?
Sometimes you need to do more than simply
transfer a value from one object to another – you
need to calculate something, delay something, or
perform a more complex function on one or more
values. North provides this flexibility with
ObVerse, a cause-and-effect programming
language.

ObVerse consists of a range of modules. The
engineer selects modules and links them
together to perform a desired strategy.

Processors
ObVerse strategy runs in an ObVerse processor within a device.

ObVerse processors come in two types:

• Standard Processor – with logic, maths, and control modules
• Advanced Processor – with the same features found in a standard processor, plus extended

maths and logic, display, application execution, directory and file services, and user-defined
modules.

Both Commander and ObServer contain several ObVerse standard processors, which are designed to run
in a controller, and so support the standard features of ObVerse, including logic, maths, and timers.

ObView (part of the North ObSys software), is designed to run within a PC with a screen, and so supports
both the standard and advanced features of ObVerse, including drawing items on screen, user input from
a screen, text manipulation, and engineer-defined modules.

Each ObView instance contains a processor, so several processors can be running simultaneously.

This document ObVerse Manual – Standard Processor covers the standard features found in both
ObvProcessor and ObView.

The document ObVerse Manual – Advanced Processor covers the advanced features found only in
ObView.

Properties, Modules, and Comments
ObVerse strategy consists of properties, modules and comments.

ObVerse properties are containers for storing data values and carry a value from one module to another
or between the processor and other tasks in the system.

ObVerse modules perform an operation on one or more input values and calculate one or more output
values. The module’s inputs can be linked to properties to use their values, and the module’s outputs can
be linked to properties to store the calculated values.

Comments in ObVerse are short pieces of text used to explain ObVerse strategy and make it easier for
others to understand.

Fig. 1 Example ObVerse

ObVerse Manual: Standard Processor 5

Editing ObVerse
You can create and edit ObVerse strategy using North’s ObvEditor application, installed as part of the
ObSys software. ObvEditor provides drag-and-drop graphical editing of ObVerse, uploading and
downloading of ObVerse strategy, and run-time monitoring of the strategy within the ObvProcessor.

You can also create and edit ObVerse strategy using a text editor.

ObVerse Manual: Standard Processor 6

Quick Start
If necessary, install North Engineering software onto your PC. It is available from www.northbt.com

Edit ObVerse in a Processor
 To edit ObVerse in a processor, follow these steps:

 Run the Start Engineering application

 If you are using a processor in the local PC, navigate to ObServer. If you are using a processor in
Commander, navigate to North IP Devices, and select the required Commander.

 Navigate to Configuration, and then select an ObVerse Processor

 Select ObVerse to start the ObvEditor application.

When the ObvEditor application starts, it determines the release date of the attached Processor, and
limits the Properties and Modules that can be included in the strategy.

For more information on using ObvEditor, refer to the section ‘Introduction to ObVerse Programming’ in
the Commander Tutorial.

http://www.northbt.com/

ObVerse Manual: Standard Processor 7

Processors
A processor runs ObVerse. There are two types of ObVerse processor: one supports a standard set of
properties and modules, and the other supports a more advanced set.

Standard Processors
ObVerse standard processors perform essential control for a distributed system – and support modules
for object reading and writing, maths, logic, and timing, as well as more advanced energy optimisations.

Commander has two ObVerse standard processors. Whenever Commander is powered-on, these
processors run their ObVerse strategy continuously.

ObServer, the core of ObSys, has four ObVerse standard processors. When ObServer is running, these
processors run their ObVerse strategy continuously.

The engineer can use the ObvEditor application to create and edit ObVerse strategy.

Each standard processor allows 1000 items within its strategy. These items are any combination of
modules, properties and comments.

Advanced Processors
ObVerse advanced processors provide all the functions of a standard processor, as well as extra maths,
logic, drawing, text, and user input modules. An advanced processor also supports custom modules,
which the engineer creates and uses as required.

ObSys includes an application called ObView, several copies of which can be run simultaneously. Each
copy of ObView is an advanced processor.

Each copy of ObView can run the same or different ObVerse strategy file when it is started – this could be
when Windows starts, when some ObVerse decides, or when the user decides.

The engineer may use ObView or the ObvEditor to create the ObVerse strategy files, but ObView loads
them from the Windows file system directly when an ObView copy is started.

ObVerse Manual: Standard Processor 8

Properties
ObVerse properties are containers for storing data values. They can carry a value from one module to
another, or between the processor and other tasks within the system – similar to a wire in an electronic
circuit.

Properties have a data type, to define the type of value they hold – like a number or a text string. The
range of types supported depends on the processor. For a complete list of the types supported by a
standard processor, refer to the Property Types in Standard Processors section below. Properties
sometimes hold values passing only between modules in the same processor. In ObVerse, we call these
private properties, as their value is private to the processor.

Properties sometimes hold values passing between the processor an external task within the system. A
task could be Essential Data, Data Transfer, Time Control, user action, or another ObVerse Processor;
either in the same North device or another. In ObVerse, we call these public properties, as their value is
publicly available.

A property may be assigned an initial value to use when the processor runs for the first time.

Private Properties
A private property holds a value as it passes between modules. One
module assigns a value to it, and one or more modules use this value (Fig.
2). The property’s value is not available outside the processor.

A private property’s reference must start with a lowercase character. The
editor usually assigns the reference automatically, as the character ‘p’ followed by a number.

The engineer should link a module output to a property’s left-side connector: the module will then store
its output in that property.

The engineer should link a module input to a property’s right-side connector: the module will then use
the value stored in the property for its input, when it is performing its operation.

Public Properties
A public property holds a value that both modules and external tasks can
access.

A public property must have a reference that starts with an uppercase
character. This reference also becomes the object reference used by
external tasks to access the value from the ObVerse processor.

External tasks can read the value of a public property, and if adjustable, write the value. A property
becomes adjustable by an external task when a module is not assigning a value to it within ObVerse.

The engineer may link a module output to the property’s left-side connector: the module will then store
its output in that property.

If the left-side connector is not linked to a module, the property becomes adjustable by an external task,
and would hold its initial value until a task wrote a new value into it.

The engineer may link a module input to the property’s right-side connector, the property will then
provide the input value to the module when it is performing its operation.

When inserting a public property, in addition to an initial value and reference, other parameters may be
included to help describe the property to an external task. These vary depending on the data type, but
could include a label, high and low value limits, read rates, etc.

Fig. 2 Private property

Fig. 3 Public property

ObVerse Manual: Standard Processor 9

In the example public property shown above (Fig. 3), the reference has been set to ‘CT’, the label has
been set to ‘Counter’, and its initial value is ‘0’. Because both left and right-hand sides are linked (but not
fully shown), a module to the left will write a value into the property (overwriting the initial value), and a
module (or more) to the right will use the value.

For more information on accessing public properties from an external task, refer to the ObVerse object
within the Commander Manual document.

Type Conversion
If a module assigns a value of one type into a property of a different type, the module automatically
converts the value to the type required by the property. Similarly, if a module input reads a value from a
property of another type, the module will automatically convert the value to that required by the module
input.

ObVerse Manual: Standard Processor 10

Reserved Public Properties
The processor reserves some property references within ObVerse for special purposes.

Description Reference Type
Label
Label for ObVerse.
If this property is present, the processor
returns its value when scanned by the
ObView engineering tool.
The value is also used as the System field
for alarms sent by the Alarm module.

L Obj\Text: 31 chars; Adjustable

Remote Object Prefix
Prefix to add in the front of the object
reference used by ObjRead and ObjWrite
modules.
If a module has its absolute option set,
then this prefix is not used.

O Obj\Obj; Adjustable

Alarm Object
If present, the Alarm module routes alarms
to the object reference specified. Typically,
this object reference ends ‘.ALARM.
If this property is not present, then the
Alarm module routes alarms to the North
device’s ALARM object.

AO Obj\Obj; Adjustable

ObVerse Manual: Standard Processor 11

Modules
Modules calculate values. They take one or more inputs and calculate one or more outputs.

Different modules are available to perform different operations. The range of modules supported
depends on the processor. For a complete list of the modules supported by a standard processor, refer to
the Module Types section below.

Inputs
Each module has one or more inputs. The engineer can leave the input set to its initial value; set its value
to a constant; link it to a property (perhaps from the output of another module); or link it to an Essential
Value.

The example strategy above (Fig. 4) shows a subtract module (Sub) with its three inputs – I1, I2, and E.
Input I1 has been set to the constant value ‘23’, input I2 has been linked to property H and uses the
property’s value, and input E has been set to the constant value ‘1’ (the default value).

The engineer may link several module inputs to a property, if those modules all need to use its value.

Outputs
Each module has one or more outputs. The engineer can ignore an output if it is not needed; connect it to
a property (so it can be used as input to another module); or connect it to an Essential Value.

The module will update the property or Essential Value whenever it calculates a new value.

The example strategy above (Fig. 4) shows a subtract module (Sub) with its one output – V. Output V has
been linked to property HL, so stores its output value in that property.

Only one module can write to a particular property, otherwise it becomes difficult to understand which
value the property holds at any time.

Fig. 4 Module with inputs and outputs

ObVerse Manual: Standard Processor 12

Comments
A comment is a short piece of text added to help understand the design
of a piece of strategy (Fig. 5). They are optional, but we recommend they
are used – it is surprising how quickly we all forget how our strategy
works (or should work).

In ObvEditor, a comment can be set as a title, and shown in large text.

You can also use the different sheets, along with a descriptive title, to
organise your ObVerse. Public properties should be labelled too, as this
will also aid understanding.

Fig. 5 Comments

ObVerse Manual: Standard Processor 13

Direct Access to Essential Values
ObVerse strategy typically uses Essential Values, and stores values within Essential Values.

Although it is possible to use Object-Read and Object-Write modules to access Essential Values in the
same way as any other object on the system, it is easier to link ObVerse strategy directly with Essential
Values (Fig. 6). This simplifies strategy, saving on module and property use.

When the engineer connects an Essential Value to a module’s input, the module reads the Essential Value
every time it recalculates. The module performs conversion as necessary.

When the engineer connects an Essential Value to a module’s output, the module writes the Essential
Value only when the module’s output value changes.

Fig. 6 Linking module directly to Essential Values

ObVerse Manual: Standard Processor 14

Property Types in Standard Processors
A property within a processor must have a unique reference and a type. The ObVerse standard processor
supports the following types of properties:

ENum
Float
NoYes
Num
Obj
OffOn
Text
Times
Profile
DateTime

Other value types can be handled by using a Text property.

ObVerse Manual: Standard Processor 15

ENum
Object Type: [Obj\ENum]

An ENum property holds a single enumerated value as a positive integer. A list of text strings defines a
label for each value. E.g. ‘Off, On, Auto’ represents values 0, 1, and 2.

The value is in the range 0…n, where n+1 is the number of options. Some values may not be valid. Display
systems convert the value from a number to text using the Alternatives parameter.

An ENum property contains the following parameters:

Description Reference Type
Label
Label of parameter

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\ENum: 0…20

Alternatives
List of alternatives, separated by commas,
where 0 is the first value, 1 is the second,
and so on

A Obj\Text: 64 chars

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0..1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 16

Float
Object Type: [Obj\Float]

A Float property holds a single floating-point value – a number with a decimal point. E.g. 623.5 or -3.14

Floating-point numbers are held in IEEE 754 format, which is accurate to approximately 6 ½ significant
figures, in the range 9999999×1090 to -9999999×1090

A Float property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\Float

Value High
Highest value allowed in the property

VH Obj\Float

Value Low
Lowest value allowed in the property

VL Obj\Float

Decimal Places
Number of decimal places to display

D Obj\Num: 0...4

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 17

NoYes
Object Type: [Obj\NoYes]

A NoYes property holds a single binary state, no or yes, as a number.

The value ‘0’ (zero) represents the no state, and the value ‘1’ represents the yes state. Display systems
will convert the number to the text ‘No’ or ‘Yes’.

A NoYes property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\NoYes

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0..1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 18

Num
Object Type: [Obj\Num]

A Num property holds a single integer value – a whole number with no decimal. E.g. 623 or -3

The value is in the range -2,147,483,648 to +2,147,483,647.

A Num property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\Num: -2147483648… 2147483647

Value High
Highest value allowed in the property

VH Obj\Num: -2147483648… 2147483647

Value Low
Lowest value allowed in the property

VL Obj\Num: -2147483648… 2147483647

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 19

Obj
Object Type: [Obj\Obj]

An Obj property holds an object reference as a text string. E.g. ‘PL’ or ‘S1.M5.DI2.S’.

An Obj property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\Obj

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 20

OffOn
Object Type: [Obj\OffOn]

An OffOn property holds a single binary state, off or on, as a number.

The value ‘0’ (zero) represents the off state, and the value ‘1’ represents the on state. Display systems will
convert the number to the text ‘Off’ or ‘On’.

An OffOn property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\OffOn

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 21

Text
Object Type: [Obj\Text]

A Text property holds a single text string value. E.g. ‘Label’

A Text property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\Text

Maximum Length
Maximum characters to be stored for value

ML Obj\Num: 1..31

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 22

Times
Object Type: [Obj\Times]

A Times property holds a list of on-off times. E.g. ’07:30-08:30,16:00-22:00’

A Times property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\Text

Periods
Maximum number of On-Off periods

P Obj\Num: 1...5

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 23

Profile
Object Type: [Obj\Profile]

A Profile property holds a list of time-value pairs. E.g. ’07:30=21,08:30=12,16:00=21,22:00=10’

A Profile property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\Text

Points
Maximum number of Time-Value pairs

P Obj\Num: 1...8

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 24

DateTime
Object Type: [Obj\DateTime]

A DateTime property holds a single date and time, used to specify single moment in time. E.g.
’25/12/22|01:00:00’

The format of the value is:

DD/MM/YY|hh:mm:ss

If only ‘DD/MM/YY’ is specified, it is assumed hh:mm:ss is ’00:00:00’

A DateTime property contains the following parameters:

Description Reference Type
Label
Label of property

L Obj\Text: 20 chars

Initial Value
Property’s value to use when ObVerse is
first run. Typically, the property’s value is
preserved during restarts.

IV Obj\DateTime: in the format ‘DD/MM/YY|hh:mm:ss’

Read Rate (s)
Indicate how often an external task should
read the property’s value

R Obj\Num

Write Inhibit
Indicates whether external tasks can
adjust the value. ObvEditor generates this
automatically.

WI Obj\ENum: 0…1;
Where: 0=Writable; 1=Write Inhibited

ObVerse Manual: Standard Processor 25

Module Types
The ObVerse standard processor supports the following modules:

Maths

Add
Subtract
Multiply
Divide
Modulus-Remainder
Multiple-Add
Average
Minimum
Maximum
Byte-To-Bits
Bits-To-Byte
Num-To-Bit
Bit-To-Num
Random
Rescale
Smooth
Square-Root
Linearize
Usage-Over-Period

Logic

Logical-And
Logical-Or
Logical-Inverse
Equal
Gate
Greater
Less
Logical-Exclusive-Or
Multiple-Logical-And
Multiple-Logical-Or
Select

Control

Feedback
Hysteresis
Lead-Lag
Optimum-Start-Stop
Proportional-Integral-Derivative
Raise-Lower

Text

Text-Equal
Text-In-Text
Text-Join
Text-Length
Text-Split

Timers

Counter
Date-Pulse
Last-Change
Latch
On-Off-Delay
Profile-Value
Pulser
Times-State (previously called Profile)

System

System-Information

Object

Alarm
Object-Read
Object-Write

Example Macros

There is an example ObVerse strategy within each of the following module descriptions. All examples are
available to insert as a macro within ObvEditor. The examples can be found in the folder:

C:\ProgramData\North Building Technologies\ObSys\TypeInfo\ObVerse\Manual Examples\

ObVerse Manual: Standard Processor 26

Add
Object Type: [Obv\Add]

The Add module (Fig. 7) performs the maths operation to add two numbers
together.

When enabled, the formula is:

 V = I1 + I2

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...2

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value

V Obj\Float

Example

The ObVerse strategy (Fig. 8) shows the adding together of two demands to determine the total demand.

The Add module’s two input values, I1 and I2, are provided by the linked properties. The output, V, passes
the result to the linked property HDT. Enable is set to ‘1’ (Yes).

Some external task will write values in to Demand 1 and 2. If the input values were set to ‘1.7’ and ‘2.9’,
the output value would be ‘4.6’.

Related Modules

Subtract, Multiple-Add

Fig. 7 Add module

Fig. 8 Add module example

ObVerse Manual: Standard Processor 27

Alarm
Object Type: [Obv\Alarm]

The Alarm module (Fig. 9) performs the remote object operation to generate
and send a North-format alarm message when triggered.

When enabled, the operation is:

 if T == TL then
 B = Alarm(P, C, PR)

North-format alarms contain six text fields. The Alarm module places the
following information into these fields:

System – from property L within the ObVerse, see Reserved References above

Point – set from input P

Condition – set from input C

Priority – set from input PR

Date & Time – from North device running the ObVerse processor

The module sends the alarm to the device’s alarm processing, which can deliver it to one or more
destinations. If the property AO is present within the ObVerse, then the alarm is delivered to this
destination instead (see Reserved References above).

The module contains the following objects:

Description Reference Type
Point
Text used for the point field in the alarm
message

P Obj\Text; Adjustable; Max chars: 30;
Default value: ‘’

Condition
Text used for the condition field in the
alarm message

C Obj\Text; Adjustable; Max chars: 30;
Default value: ‘’

Priority
Importance of the alarm notification,
where: 1=Life safety, 2=Property safety;
3=Major,... 9=Information only; 0=No Alarm

PR Obj\Num; Adjustable; Range 0, 1...9;
Default value: 0

Trigger
The trigger input, to cause the alarm to be
sent when it changes to the Trigger Level
(TL)

T Obj\NoYes; Adjustable;
Default value: 0 (No)

Trigger Level
The state to which the Trigger input (T)
must be equal, to cause the alarm to be
sent

TL Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Enable
Enables the module’s operation. If set to
‘0’ (No), then no operation occurs

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Busy
Set to 1 (Yes) when the alarm is in the
process of being sent

B Obj\NoYes

Fig. 9 Alarm module

ObVerse Manual: Standard Processor 28

Example

This ObVerse strategy (Fig. 10) sends an alarm message when a temperature exceeds a high limit, and
when it returns below the limit. In both Alarm modules, notice how the trigger level (TL), priority (PR),
and condition (C) inputs all differ.

Enable is set to the constant value ‘1’ (Yes) on both Alarm modules.

Some external task will write the current temperature to the Temp property, AT. Some external task may
write a different value into the High Limit property.

When the current temperature in Temp property is greater than that in the High Limit property, the
greater module (Gt) will output the value ‘1’. This will trigger the upper Alarm module to send its ‘Too
High’ alarm message. If the temperature falls below this value, the Greater (Gt) module will output the
value ‘0’. This will trigger the lower Alarm module to send its ‘Ok’ alarm.

If there is an object with reference AO in the ObVerse strategy, the module will send alarm messages to
the object specified within it; otherwise it will send alarm message to the object ALARM, which routes the
messages to the Alarm Delivery task.

An alarm will be sent once by an Alarm module, for each time its trigger input changes to equals its
trigger level input.

Fig. 10 Alarm module example

ObVerse Manual: Standard Processor 29

Average
Object Type: [Obv\Ave]

The Ave module (Fig. 11) performs the maths operation to find the average
of up to eight numbers.

When enabled, the formula is:

 V = (I1 + I2 + I3 + … + Ix) / X

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Num Inputs
Number of inputs (starting from I1) to
include in calculation

X Obj\Num; Range: 0..8; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value

V Obj\Float

Example

The ObVerse strategy (Fig. 12) shows a simple averaging of three temperature sensors.

The Ave module’s three input values, I1 to I3, are provided by the linked properties. Input X is set to ‘3’.
The output, V, passes the result to the linked property AT. Enable is set to ‘1’ (Yes).

Some external task will write values into each of the Temp properties. With the input values set to ‘21’,
‘22’, and ‘23’, the output value will be ‘22’.

Remember it is possible to set Zip inputs so that they give an override value whenever a sensor is out-of-
limits.

Related Modules

Minimum, Maximum

Fig. 11 Average module

Fig. 12 Average module example

ObVerse Manual: Standard Processor 30

Bits-To-Byte
Object Type: [Obv\BitsToByte]

The BitsToByte module (Fig. 13) performs the maths operation to build a
byte value from a set of eight individual bits.

When enabled, the formula is:

 V = 0
 if I0 then
 V = V + 1
 if I1 then
 V = V + 2
 if I2 then
 V = V + 4
 if I3 then
 V = V + 8
 if I4 then
 V = V + 16
 if I5 then
 V = V + 32
 if I6 then
 V = V + 64
 if I7 then
 V = V + 128

The module contains the following objects:

Description Reference Type
Bit x
The bit number to set. Input to include in
calculation, where x is in the range 0...7.
Input 0 is the least significant bit, 8 the
most significant.

Ix Obj\OffOn; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value

V Obj\Num: 0…255

Example

The ObVerse strategy (Fig. 14) shows three binary states converted to a byte value for easy transmission
to another device (where the value will be decoded back to the three states).

The BitsToByte module’s three bit values, I0 to I2, are provided by the linked properties. The output, V,
passes the result to the linked property C. Enable is set to the constant value ‘1’ (Yes).

Fig. 13 Bits-To-Byte module

Fig. 14 Bits-To-Byte module example

ObVerse Manual: Standard Processor 31

Some external task will write the State, Fault, and Override values. If State and Override properties are
set to ‘1’, and property Fault is cleared to ‘0’, then input bits 0 and 2 are set to ‘1’, and the output value
will be ‘5’.

Related Modules

Byte-To-Bits, Num-To-Bit, Bit-To-Num

Availability

Available in standard and advanced processor versions dated September 2012 and later.

ObVerse Manual: Standard Processor 32

Bit-To-Num
Object Type: [Obv\BitToNum]

The BitToNum module (Fig. 15) performs the maths operation to output
the highest input number set, from up to eight input states. The output is
set to ‘0’ when no inputs are set.

When enabled, the formula is:

 if I8 then
 V = 8
 else if I7 then
 V = 7
 else if I6 then
 V = 6
 else if I5 then
 V = 5
 else if I4 then
 V = 4
 else if I3 then
 V = 3
 else if I2 then
 V = 2
 else if I1 then
 V = 1
 else
 V = 0

The module contains the following objects:

Description Reference Type
Input Bit x
Input to include in calculation, where x is
in the range 1...8

Ix Obj\NoYes; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Highest Bit Set
The last calculated value

V Obj\Num: 0…8

Example

The ObVerse strategy (Fig. 16) shows the BitToNum module used to monitor a number of alarm statuses
and output the highest priority – in this case a fire alarm is condition 4, whilst a boiler lockout is condition
2.

Fig. 15 Bit-To-Num module

Fig. 16 Bit-To-Num module example

ObVerse Manual: Standard Processor 33

The BitToNum module’s four inputs, I1 to I4, are provided by the linked properties. The output, V, passes
the result to the linked property CC. Enable is set to the constant value ‘1’ (Yes).

Some external task writes the states of the four input properties HighTemp, BoilerLockout, DoorForced,
and FireAlarm. When input 4, from property FireAlarm, is set to ‘1’, the output value will be ‘4’. When
input 1, from property HighTemp is set to ‘1’ and all other inputs are ‘0’, the output value will be ‘1’.

Related Modules

Num-To-Bit, Byte-To-Bits, Bits-To-Byte

Availability

Available in standard and advanced processor versions dated September 2012 and later.

ObVerse Manual: Standard Processor 34

Byte-To-Bits
Object Type: [Obv\ByteToBits]

The ByteToBits module (Fig. 17) performs the maths operation to separate
a byte value into eight individual bit states.

When enabled, the formula is:

 if I is odd then
 O0 = 1
 if (I/2) is odd then
 O1 = 1
 if (I/4) is odd then
 O2 = 1
 if (I/8) is odd then
 O3 = 1
 if (I/16) is odd then
 O4 = 1
 if (I/32) is odd then
 O5 = 1
 if (I/64) is odd then
 O6 = 1
 if (I/128) is odd then
 O7 = 1

The module contains the following objects:

Description Reference Type
Input
Input byte value to convert to bits

I Obj\Num; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and
outputs are left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Bit x
The last calculated value x for each bit of
the byte, where x is the in the range 0...7

Ox Obj\OffOn

Example

The ObVerse strategy (Fig. 18) shows a byte value converted to three binary states.

The ByteToBits module’s input value, I, is provided by the linked property. The bit outputs, O0 to O2, pass
the result to the linked properties. Enable is set to ‘1’ (Yes).

Some external task writes a value to the Code Copy property. When the value written is ‘5’, the outputs
will set the output properties to State = ‘1’, Fault = ‘0’, and Override = ‘1’.

Fig. 17 Byte-To-Bits module

Fig. 18 Byte-To-Bits module example

ObVerse Manual: Standard Processor 35

Related Modules

Bits-To-Byte, Bit-To-Num, Num-To-Bit

Availability

Available in standard and advanced processor versions dated September 2012 and later.

ObVerse Manual: Standard Processor 36

Counter
Object Type: [Obv\Counter]

The Counter module (Fig. 19) performs the timer operation to increment a
counter value when the input state transitions from off to on. The module
also outputs the total time the input has been on.

An input allows the counter and timer outputs to be reset.

When enabled, the operation is:

 if I then
 V = V + 1
 T = T + Time(I)
 if R then
 V = 0
 T = 0

The module contains the following objects:

Description Reference Type
Input
Input to count and time

I Obj\OffOn; Adjustable;
Default value: 0 (Off)

Reset
Set to 1 (Yes) to reset both Value and Timer
outputs. Set to 0 (No) to enable counting

R Obj\NoYes; Adjustable;
Default value: 0 (No)

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and
outputs are left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Count
The count of times the Input has changed
from 0-to-1 (Off-to-On)

V Obj\Num: 0…2147483647

Run Time (s)
The number of seconds the Input has been
set to 1 (On)

T Obj\Num: 0…2147483647

Example

The ObVerse strategy (Fig. 20) shows a Counter module counting the number of boiler starts, and timing
how long the boiler runs in hours. Additional strategy could compare the number of starts and hours run
to determine when to service the boiler.

The Counter module’s input value, I, is provided by the BoilerRunning property. The output, V, passes the
number of starts to the property NumStarts. The output, T, passes the time run period via a Divide
module to the property HoursRun for total hours run. Enable is set to the constant value ‘1’ (Yes).

Fig. 19 Counter module

Fig. 20 Counter module example

ObVerse Manual: Standard Processor 37

Some external task writes values into properties BoilerRunning and BoilerServiced. When the
BoilerServiced property is set to ‘1’, the Counter module resets the properties NumStarts and
SecondsRun to ‘0’. When BoilerServiced is set to ‘0’, the module will start its counting and timing
function. When BoilerRun is set to ‘1’, the module will increment the NumStarts property, and every
complete second the BoilerRun property is still ‘1’, the module will increment the SecondsRun property.

ObVerse Manual: Standard Processor 38

Date-Pulse
Object Type: [Obv\DatePulse]

The Date-Pulse module (Fig. 21) gives a ’1’ output when the current
platform date and time correspond with the DateTime input value. The
output pulse can occur before and until the specified datetime, or from and
after the specified datetime value.

The Pulse length input specifies the length of the pulse in minutes. A
negative number of minutes causes the output to occur before and up to the datetime value; a positive
number of minutes causes the output to occur from the datetime value.

When enabled, the operation is:

 if P < 0 then
 if (currentdatetime >= (D – (-1 * P minutes))) and (currentdatetime< D)
 V = 1
 else
 V = 0
 else if P > 0 then
 if (currentdatetime >= (D – (-1 * P minutes))) and (currentdatetime< D)
 V = 1
 else
 V = 0

The module contains the following objects:

Description Reference Type
Date
Date and Time around which to generate
output pulse

D Obj\DateTime; Adjustable;
Default value: 0

Pulse (mins)
Pulse length in minutes, and position of
pulse relative to the Date input – positive
means pulse starts at Date, negative
means pulse ends at Date

D Obj\Num; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

State
The pulse state, where 1 means current
datetime is within defined timeframe

V Obj\OffOn

Fig. 21 Date-Pulse module

ObVerse Manual: Standard Processor 39

Example

The ObVerse strategy (Fig. 22) shows a Date-Pulse module calculating when a system is in Holiday Mode.
The Holiday Start and Holiday Days (length) is specified. The Holiday Days are multiplied by 1440 to
convert days to minutes.

When the current date and time are within the 7 day period 12/06/23 ... 18/06/23 inclusive) the Holiday
Mode property is set to ‘1’.

When the current date and time are outside the specified period, the Holiday Mode property value is set
to 0.

Related Modules

System-Info, Times-State

Availability

Available in standard and advanced processor versions dated February 2022 and later.

Fig. 22 Date-Pulse module example

ObVerse Manual: Standard Processor 40

Divide
Object Type: [Obv\Div]

The Div module (Fig. 23) performs the maths operation to divide two
numbers.

When enabled, the formula is:

 V = I1 / I2

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1..2
Input 1 is the dividend; Input 2 is the
divisor

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value, the quotient

V Obj\Float

Example

The ObVerse strategy (Fig. 24) shows two Div modules. The first divides a Required% parameter by a
constant, 20, to determine the number of pumps to run – i.e. 100% is equivalent to 5 pumps. The
NumPumps property is type Num, and so holds only whole numbers – in this case 0...5. This property
could be used to run a particular number of pumps.

The second Div module divides the total energy being used by the number of pumps running, to
determine the average Watts used by each pump.

Some external task writes a percentage to the Required% property, and some task writes a total energy
value to property Energy W. When the Require% is set to ‘66’ and Energy W set to ‘620’, the NumPumps
will be calculated as ‘3’ (the Div modules output, V, is ‘3.3’ and converted from a type float to num) and
Pump Watts as ‘206.667’.

Related Modules

Multiply, Modulus-Remainder

Fig. 23 Divide Module

Fig. 24 Divide module example

ObVerse Manual: Standard Processor 41

Equal
Object Type: [Obv\Equal]

The Equal module (Fig. 25) performs the logic operation to compare two
inputs for equality.

When enabled, the formula is:

 if I1 == I2 then
 V = 1
 else
 V = 0

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...2

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1

Value
The last calculated value

V Obj\NoYes

Example

The ObVerse strategy (Fig. 26) shows three SysInfo modules feeding into three Equal modules. SysInfo
modules are passing the day-of-week, hour-of-day, and minute-of-hour into the Equal modules. These
check to see whether the day-of-week is currently ‘5’ (i.e. Friday), the current hour is ‘16’ (i.e. 4pm), and
the current minute is set to ‘55’. When all three of these are equal (i.e. its Friday at 16:55), then the
Crackerjack property is set ‘1’. After 1 minute, the minute-of-hour will increment, and the lower Equal will
set its output to ‘0’, the MAnd module will set Crackerjack to ‘0’.

Related Modules

Greater, Less

Fig. 25 Equal module

Fig. 26 Equal module example

ObVerse Manual: Standard Processor 42

Feedback
Object Type: [Obv\Feedback]

The Feedback module (Fig. 27) performs the control operation to
determine whether an input is under control with respect to a required
value.

It has a band of variance, which specifies how much the input can vary
around the required value. It also has a grace time (in seconds), which
specifies the grace time allowed after the required value changes before
the input must return within the variance band.

If the input is outside of the band, excepting for grace periods, the status is set to ‘1’. Specify the required
value, actual value and band in the same units.

When enabled, the operation is:

 S = Feedback(R, A, B, G)

The module contains the following objects:

Description Reference Type
Required
The required value of the thing being
controlled

R Obj\Float; Adjustable;
Default value: 0

Actual
The actual value of the thing being
controlled

A Obj\Float; Adjustable;
Default value: 0

Band
The amount of variability in the Actual
value that is acceptable. This is distributed
evenly around the Required value, 50%
above and 50% below

B Obj\Float; Adjustable;
Default value: 0

Grace Time (s)
The time after a change in the Required
value during which the Actual is allowed to
exceed the Band

G Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and S is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Required (R)

Grace
Time (G)

Actual (A)

Fig. 27 Feedback module

Feedback
Alarm (S)

1

0

Grace
Time (G)

Grace
Time (G)

Ba
nd

 (B
)

Ba
nd

 (B
)

ObVerse Manual: Standard Processor 43

Description Reference Type
Feedback Alarm
Set if the Actual value is outside the
required band, and outside the Grace Time

S Obj\NoYes

Example

The ObVerse strategy (Fig. 28) shows feedback used to monitor the controlled light level against a
required level. A band is specified to allow a variance around the required level. The grace time provides
a delay during which time the actual level can reach the required level.

The Feedback module’s required and actual values are taken from properties ReqLightLevel and
ActualLevel. The band input, B, is set to a constant ‘10’ and grace timer input, G, set to 20 seconds.
Enable is set to ‘1’ (Yes).

Some external task writes a value into ReqLightLevel property. Some external task writes the current
light level into the property ActualLevel. When the required value is changed to ‘80’, and band to ‘10’,
then the feedback module allows waits for the grace timer (20 seconds) before checking that the
ActualLevel is in the range 75…85. If, after the grace timer, the actual value is outside this value then
output S will be set ‘1’ (Yes).

Fig. 28 Feedback module example

ObVerse Manual: Standard Processor 44

Gate
Object Type: [Obv\Gate]

The Gate module (Fig. 29) performs the logic operation to allow one of two
possible input values through to the output, based on a switch input.

When enabled, the operation is:

 if S then
 V = I2
 else
 V = I1

The module contains the following objects:

Description Reference Type
Input x
Input to pass to output, dependent on
Switch, where x is in the range 1...2

Ix Obj\Text; Adjustable;
Default value: ‘’

Switch
If set to ‘0’, then Input 1 is passed to the
output. If set to a non-zero number, then
Input 2 is passed to the output

S Obj\ENum; Adjustable;
Values: 0=Input 1, 1=Input 2
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last passed value

V Obj\Text

Example

The ObVerse strategy (Fig. 30) shows a heating setpoint calculated depending on a specified setpoint and
EcoMode flag.

The Gate module’s two input values, I1 and I2, are provided by properties: one is linked directly to the
Setpoint property; the other is calculated by the Sub module, as Setpoint-3. The switching is provided by
the EcoMode property. The Gate module output, V, writes the resultant value to the HeatSetpoint
property. Enable is set to the constant value ‘1’ (Yes).

Some external task writes the required setpoint to the Setpoint property. If Setpoint is set to ‘21’, private
property p23 will be set to ’18’ (21-3). If some external task sets EcoMode to ‘0’, then the Gate output will
be set to ‘21’ from input I1. If EcoMode is set to ‘1’, then the output will be set to ‘18’ from I1.

Related Modules

Select

Fig. 29 Gate module

Fig. 30 Gate module example

ObVerse Manual: Standard Processor 45

Greater
Object Type: [Obv\Gt]

The Gt module (Fig. 31) performs the logic operation to determine
whether one input is greater than the other input.

When enabled, the formula is:

 if I1 > I2 then
 V = 1
 else
 V = 0

The module contains the following objects:

Description Reference Type
Input x
Input x to compare, where x is in the range
1...2

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to ‘1’ (Yes) if Input 1 is greater than
Input 2

V Obj\NoYes

Example

The ObVerse strategy (Fig. 32) shows the outside air temperature used to enable cooling. If the
temperature is greater than 23, then cooling is enabled.

The Gt module’s input, I1, is provided by a linked property. Input, I2, is set to a constant ‘23’. The output
passes the result to property CoolEnable. Enable is set to the constant value ‘1’ (Yes).

Some external task writes a value to the OutsideTemp property. If OutsideTemp set to ‘21’, the Gt
module output value will be ‘0’, and will be written to the CoolEnable property.

Related Modules

Less, Equal

Fig. 31 Greater module

Fig. 32 Greater module example

ObVerse Manual: Standard Processor 46

Hysteresis
Object Type: [Obv\Hyst]

The Hyst module (Fig. 33) performs the hysteresis control operation to
determine an output depending on a required level, a band of variance,
and the current state of the output.

It has a band of variance, which specifies how much the input can vary
around the required level value. If the input is above the specified band, the
value is set to ‘1’. If the input is below the specified band, the value is set to
‘0’. If the input is within the specified band, the output is not changed.

When enabled, the operation is:

 V = Hyst(I, L, B)

The module contains the following objects:

Description Reference Type
Input
The actual value of the thing being
controlled

I Obj\Float; Adjustable;
Default value: 0

Required Level
The required value of the thing being
controlled

L Obj\Float; Adjustable;
Default value: 0

Band
The amount of variability in the Input
value that is acceptable, in which no
output switching is done. The Band is
distributed evenly around the Required
Level, 50% above and 50% below.

B Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

State
Set to ‘1’ (On) if the Input value is above
the required band; and set to ‘0’ (Off) if the
Input is below the required band. If the
Input is within the band, this state is left
unchanged

V Obj\OffOn

Required
Level (L)

Input (I)

1

Fig. 33 Hysteresis module

Ba
nd

 (B
)

Ba
nd

 (B
)

State (S)
0

ObVerse Manual: Standard Processor 47

Example

The ObVerse strategy (Fig. 34) shows hysteresis used to calculate when to enable cooling. A band is
specified to allow a variance around the setpoint. When the temperature exceeds this band, the cooling
output is enabled until the temperature falls below the lower band.

The Hyst module’s I and L levels are provided by the Temp and Setpoint properties. The band input, B, is
set to ‘2’. Enable is set to ‘1’ (Yes).

Some external task writes a setpoint to the Setpoint input. Some external task writes the current
temperature to the Temp property. If the Setpoint is set to ‘21’, and band to ‘2’, then the hysteresis
module allows an input value in the range 20…22 without affecting the output. However, if the input
value rises above ‘22’, the output will write ‘1’ (On) to the CoolReq property. The CoolReq property will
only be set to ‘0’ when the Temp property falls below ‘20’.

If the application were for heating rather than cooling, invert the output using the Logical-Inverse
module.

Related Modules

Greater, Less

Fig. 34 Hysteresis module example

ObVerse Manual: Standard Processor 48

Last-Change
Object Type: [Obv\LastChange]

The LastChange module (Fig. 35) monitors its eight I inputs for changes
and set its Value (V) output to the value of the input that last changed. It
also sets its Last (L) output to the index of the input that last changed.

When enabled, the operation is:

 if (I1 has changed)
 V = I1; L = 1
 Else if (I2 has changed)
 V = I2; L = 2
 Else if (I3 has changed)
 V = I3; L = 3
 Else if (I4 has changed)
 V = I4; L = 4
 Else if (I5 has changed)
 V = I5; L = 5
 Else if (I6 has changed)
 V = I6; L = 6
 Else if (I7 has changed)
 V = I7; L = 7
 Else if (I8 has changed)
 V = I8; L = 8
 Else
 V and L are left unchanged

The module contains the following objects:

Description Reference Type
Input x
Input x value to monitor, where x is in the
range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No) then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to the value of the input that last
changed. If two inputs change
simultaneously, the value of the input with
the lower of the two indices is used

V Obj\Float

Last
Set to the index of the input that last
changed, in the range 1...8. If two inputs
change simultaneously, the lower of the
two indices is used

L Obj\NoYes

Fig. 35 LastChange module

ObVerse Manual: Standard Processor 49

Example

The ObVerse strategy (Fig. 36) reads a required setpoint from three different systems (as the end-user can
use any of the systems to adjust the setpoint). The three setpoints read are passed into the LastChange
module, which determines which system the end-user last used to change the setpoint. The strategy then
sends the latest setpoint to all systems to synchronise them.

Related Modules

Latch

Availability

Available in standard and advanced processor versions dated August 2023 and later.

Fig. 36 LastChange module example

ObVerse Manual: Standard Processor 50

Latch
Object Type: [Obv\Latch]

The Latch module (Fig. 37) performs the timer operation to latch an input
value, and to indicate when the value has changed.

When enabled, the operation is:

 if (T == 1) and (V != I) then
 C = 1
 else
 C = 0

 if T == 1 then
 V = I

The module contains the following objects:

Description Reference Type
Input
Input value to latch

I Obj\Text; Adjustable;
Default value: ‘’

Trigger
Enables passing the Input value to the
output Value. Typically, this is linked to a
pulsed value.
Set to ‘1’ (Yes), to pass the Input value to
the output Value, and enable value
Changed notifications.
Set to ‘0’ (No) to stop passing the Input
value, latching the output Value.

T Obj\NoYes;
Default value: 1 (Yes)

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to the input value when Trigger is set
‘1’ (Yes)

V Obj\Text

Changed
Pulsed output – set to ‘1’ (Yes) when the
Value has changed, then resets to ‘0’ (No)
after one processor cycle

C Obj\NoYes

Example

The ObVerse strategy (Fig. 38) calculates the amount of energy used in the current hour. It latches the
total energy used on the hour and subtracts that latched value from the current total energy, to give the
amount of energy used since the latch occurred.

The Latch module’s input values, I and T, are provided by the Energy Used property and a private
property that is set to ‘1’ every hour. The output, V, is stored in a private property, which is then
subtracted from the current Energy Used to determine the usage. Enable is set to ‘1’ (Yes).

Fig. 37 Latch module

Fig. 38 Latch module example

ObVerse Manual: Standard Processor 51

Some external task writes the current totalised energy use (say kWh reading from a meter) to the Energy
Used property. As the first hourly pulse occurs, the Latch module captures the reading at that point. From
then on, the Subtract module subtracts the latched value from the latest value and stores this value in
the HourEnergy property. When the next hour pulse occurs, the Latch module captures the current value
again. The process repeats every hour.

Related Modules

Usage-Over-Period

Availability

Available in standard and advanced processor versions dated April 2015 and later.

ObVerse Manual: Standard Processor 52

Lead-Lag
Object Type: [Obv\LeadLag]

The LeadLag module (Fig. 39) performs a control operation to assist with
enabling multiple items of plant that run in sequence – also known as a
lead-lag configuration.

Each item of plant has its own LeadLag module, which is given an index.
Link these modules together to form a circular chain. The modules are all
passed a common start index (the lead item), and count of items to run.

The module determines when its item of plant should run based on its position in the chain of LeadLag
modules. A module can be set to maintenance mode (e.g. on a fault condition), disabling the plant item’s
operation and passing operation to the next module in the chain.

When enabled, the operation is:

 if S == I then
 if C then
 if D == 0 then
 R = 1
 CO = C - 1
 else
 R = 0
 CO = C
 else
 R = 0
 CO = 0
 else
 if CI then
 if D == 0 then
 R = 1
 CO = CI - 1
 else
 R = 0
 CO = CI
 else
 R = 0
 CO = 0

The module contains the following objects:

Description Reference Type
Chain In
Link this, via a property, to Chain Out from
the previous LeadLag module. All LeadLag
modules controlling a group of plant must
be linked in a cyclic chain.

CI Obj\Num; Adjustable;
Default value: 0

Maintenance
Temporarily disables the plant linked to
this module from running. Can be used as
fault (trip) or maintenance input

D Obj\NoYes; Adjustable;
Default value: 0 (No)

Index
Index number of this LeadLag module, in
the chain of modules. Index modules
sequentially, starting from 0, in the order
they will be operated.

I Obj\Num; Adjustable;
Default value: 0

Fig. 39 Lead-Lag module

ObVerse Manual: Standard Processor 53

Description Reference Type
Start
The index number of the lead item of plant
to run. Set this value periodically to ensure
even wear of the plant

S Obj\Num; Adjustable;
Default value: 0

Count
The number of plant items to run. Set this
based on demand

C Obj\Num; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and
outputs are left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Chain Out
Output to next LeadLag module in the
loop

CO Obj\Num

Run
Output set to ‘1’ (Yes) when the device
linked to this module needs to run

R Obj\NoYes

Example

The ObVerse strategy (Fig. 40) shows the lead-lag configuration of five chillers. The lead chiller is
specified along with a count of chillers to run. Collectively, the LeadLag modules decide which chillers
are run, and which are placed in standby. If a running chiller is disabled, maybe due to a fault, then it is
stopped and the next chiller in the chain is started.

Each LeadLag module’s CO output is linked to the next module’s CI input via a private property, forming
a circular chain. The modules are numbered sequentially, set using input I, using constants in the range
0…4. The Start and Count properties are linked to each LeadLag module’s S and C inputs. Each LeadLag
module has its input D is connected to a Disable property. Each Enable is set to ‘1’ (Yes).

Fig. 40 Lead-Lag module example

ObVerse Manual: Standard Processor 54

Some external task determines the start chiller (sometimes called the Lead) and the number of chillers
needed, and writes these into the Start and Count properties. Some external tasks determine the
operational (or fault) state of each chiller, and write these into the Disable X properties.

If the Start property is set to ‘0’, only the LeadLag module with its I input set to ‘0’ starts the sequence
calculation. The module determines whether its chiller can run, and if so, sets its output R to ‘1’,
decrements the count of chillers needed to determine the ‘number of chillers still needed’, and passes
this value to the next LeadLag module via the CO-CI link. If its module cannot run, because its D input is
‘0’, it passes the count of chillers needed to the next LeadLag module.

A LeadLag module with an I input that doesn’t match the Start property works instead from its CI input,
determines whether its chiller is needed and available, decrements the count if necessary, and passes
this value to the next LeadLag module in the chain. This continues until the value passed becomes ‘0’ or
works all the way around the chain.

Availability

Available in standard and advanced processor versions dated April 2015 and later.

ObVerse Manual: Standard Processor 55

Less
Object Type: [Obv\Less]

The Less module (Fig. 41) performs the logic operation to determine
whether one input is less than the other.

When enabled, the formula is:

 if I1 < I2 then
 V = 1
 else
 V = 0

The module contains the following objects:

Description Reference Type
Input x
Input x to compare, where x is in the range
1...2

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1

Value
Set to ‘1’ (Yes) if Input 1 is less than Input 2

V Obj\NoYes

Example

The ObVerse strategy (Fig. 42) shows the outside air temperature used to enable heating. If the
temperature is less than 19, then heating is enabled.

The Less module’s input I1, is provided by a linked property. Input I2, is set to a constant ‘19’. The output
writes the result to property HeatEnable. Enable is set to ‘1’ (Yes).

Some external task sets the OutsideTemp value. If the OutsideTemp is set to ‘21’, the HeatEnable value
will be ‘0’ (No). If the OutsideTemp value is ‘16’, the HeatEnable value will be ‘1’.

Related Modules

Greater, Equal, Minimum

Fig. 41 Less module

Fig. 42 Less module example

ObVerse Manual: Standard Processor 56

Linearize
Object Type: [Obv\Linearize]

The Linearize module (Fig. 43) performs the maths operation to linearize a
non-linear system using a set of linear ranges.

Using a list of input-to-value points, the module determines between
which pair of input points the input lies and uses the corresponding value
points to determine an approximate output value.

If the input is below Input Point 0 (I0), or equal to or above the Input Point
5 (I5), the output from this module is set to ‘0’. This allows several
Linearize modules to be summed, to produce linearization over more
than six input-to-value points.

When enabled, the operation is:

 if (I >= I0) and (I < I1) then
 V = V1 – (V1 - V0) x (I1 – I) / (I1 – I0)
 else if (I >= I1) and (I < I2) then
 V = V2 – (V2 – V1) x (I2 – I) / (I2 – I1)
 else if (I >= I2) and (I < I3) then
 V = V3 – (V3 – V2) x (I3 – I) / (I3 – I2)
 else if (I >= I3) and (I < I4) then
 V = V4 – (V4 – V3) x (I4 – I) / (I4 – I3)
 else if (I >= I4) and (I < I5) then
 V = V5 – (V5 – V4) x (I5 – I) / (I5 – I4)
 else
 V = 0

The module contains the following objects:

Description Reference Type
Input
Input to convert

I Obj\Float; Adjustable;
Default value: 0

Input Point x
Input value for input-to-value point x,
where x is in the range 0...5

Ix Obj\Float; Adjustable
Default value: 0

Value Point x
Value output for input-to-value point x,
where x is in the range 0...5

Vx Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to the result of the conversion

V Obj\Float

Fig. 43 Linearize module

ObVerse Manual: Standard Processor 57

Example

The ObVerse strategy (Fig. 44) calculates today’s approximate sunrise time (in minutes). The strategy first
calculates an approximate day-of-year (because it assumes months have 30 days). Sunrise changes non-
linearly depending on the position of the sun and the location’s latitude. The table below shows the
sunrise time sampled every 30 days throughout the year in London. The strategy uses this data to
approximate the sunrise time between these days, for the current date.

Day of Year Sunrise Time
(mins)

1 483
31 457
61 406
91 337

121 275
151 233
166 227
181 231
211 266
241 314
271 360
301 412
331 460
365 483

The Linearize modules input points, Ix, are set with the day of year, and the value points, Vx, are set with
the sunrise time from the table above. The input I, is provided by the DayNum property. Multiple
Linearize modules are used: only one will output a non-zero value, so their outputs are added together.

The strategy is approximate.

Fig. 44 Linearize module example

ObVerse Manual: Standard Processor 58

Related Modules

Rescale

Availability

Available in standard and advanced processor versions dated September 2012 and later.

ObVerse Manual: Standard Processor 59

Logical-And
Object Type: [Obv\LAnd]

The LAnd module (Fig. 45) performs the logic operation to determine
whether both of its inputs are set to a non-zero value. It performs the
logical and operation (AND).

When enabled, the formula is:

 if I1 and I2 then
 V = 1
 else
 V = 0

I1 I2 V
0 0 0
0 1 0
1 0 0
1 1 1

The module contains the following objects:

Description Reference Type
Input x
Inputs to AND together, where x is in the
range 1...2

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set ‘1’ (Yes) when both Input 1 and Input 2
are non-zero, otherwise set ‘0’ (No)

V Obj\NoYes

Example

The ObVerse strategy (Fig. 46) determines whether the boiler is healthy (by inverting a boiler fault),
before logically AND’ing this with the boiler required state, to determine whether to run the boiler.

Some external task will write the current state of the boiler fault signal into Boiler Fault property, which is
inverted before the LAnd module performs its calculation. The module writes the output value ‘1’ if both
inputs are ‘1’; otherwise it sets the value to ‘0’.

Related Modules

Multiple-Logical-And, Logical-Or, Logical-Exclusive-Or

Fig. 45 Logical-And module

Fig. 46 Logical-And module example

ObVerse Manual: Standard Processor 60

Logical-Inverse
Object Type: [Obv\LInv]

The LInv module (Fig. 47) performs the logic operation to invert its input – a
zero ‘0’ value becomes ‘1’ (Yes), and a non-zero value becomes ‘0’ (No).

When enabled, the formula is:

 if I1 then
 V = 0
 else
 V = 1

The module contains the following objects:

Description Reference Type
Input
Input to invert

I1 Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to ‘0’ when Input is non-zero, and ‘0’
when Input is zero

V Obj\NoYes

Example

The ObVerse strategy (Fig. 48) determines whether the boiler is healthy (by inverting a boiler fault),
before logically AND’ing this with the boiler required state, to determine whether to run the boiler.

Some external task will write the current state of the boiler fault signal into Boiler Fault property, which is
inverted by the LInv module, before passing the value to the BoilerOk property. If Boiler Fault is ‘0’ the
LInv module sets the BoilerOk property to ‘1’, otherwise it sets the property to ‘0’. The LAnd module
writes the output value ‘1’ if both inputs are ‘1’; otherwise it sets the value to ‘0’.

Fig. 47 Logical-Inverse module

Fig. 48 Logical-Inverse module example

ObVerse Manual: Standard Processor 61

Logical-Exclusive-Or
Object Type: [Obv\LXor]

The LXor module (Fig. 49) performs the logic operation to determine
whether its inputs differ – i.e. one input is non-zero, and one input is zero.
It performs the logical exclusive-or operation (XOR).

When enabled, the formula is:

 if ((I1 == 0) and I2) or (I1 and (I2 == 0)) then
 V = 1
 else
 V = 0

I1 I2 V
0 0 0
0 1 1
1 0 1
1 1 0

The module contains the following objects:

Description Reference Type
Input x
Inputs to XOR together, where x is in the
range 1...2

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to ‘1’ if one Input is non-zero and one
input is zero

V Obj\NoYes

Example

The ObVerse strategy (Fig. 50) determines when a bit value changes from non-zero to zero. The
JustGoneOff property will stay set for one second – the off delay of the OODelay module.

After being ‘0’ for some period, an external task sets the Bit property to ‘1’. The OODelay module will
output ‘1’ immediately, so both inputs to the LXor module are the same and the LXor module writes ‘0’ to
JustGoneOff property. However, when the Bit property value changes back to ‘0’, the OODelay output
remains at ‘0’ for 1 second: during this 1 second period, the inputs to the LXor are different, so it writes ‘1’
to the JustGoneOff property.

Related Modules

Multiple-Logical-Or, Logical-And

Fig. 49 Logical-Exclusive-Or
module

Fig. 50 Logical-Exclusive-Or module example

ObVerse Manual: Standard Processor 62

Logical-Or
Object Type: [Obv\LOr]

The LOr module (Fig. 51) performs the logic operation to determine
whether either of its specified inputs are set non-zero. It performs the
logical or operation (OR).

When enabled, the formula is:

 if I1 or I2 then
 V = 1
 else
 V = 0

I1 I2 V
0 0 0
0 1 1
1 0 1
1 1 1

The module contains the following objects:

Description Reference Type
Input x
Input x to OR together, where x is in the
range 1...2

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to ‘1’ if either Input 1 or Input 2 is non-
zero, otherwise set ‘0’

V Obj\NoYes

Example

The ObVerse strategy (Fig. 52) examines the open-states of two doors to the same area – if either is open,
the room is not secure. If both are open, the room is not secure.

Related Modules

Multiple-Logical-Or, Logical-And, Logical-Exclusive-Or

Fig. 51 Logical-Or module

Fig. 52 Logical-Or module example

ObVerse Manual: Standard Processor 63

Maximum
Object Type: [Obv\Max]

The Max module (Fig. 53) performs the maths operation to find the
maximum of up to eight numbers.

When enabled, the operation is:

 V = Maximum(I1, I2, I3, … IX)

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Num Inputs
Number of Inputs (starting from I1) to
include in calculation

X Obj\Num; Range 0...8; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value

V Obj\Float

Example

The ObVerse strategy (Fig. 54) determines the maximum temperature from three sensor values

The Max module’s three input values, I1 to I3, are read from the properties Temp1, 2, and 3. Input X is set
to a constant of ‘3’. The output V is written to the MaxTemp property. Enable is set to ‘1’ (Yes).

Some external task writes into the Temp properties. If the input values were set to ‘21’, ‘22’, and ‘23’ the
module would write the value ‘23’ to MaxTemp.

Remember it is possible to set Zip inputs so that they give an override value whenever a sensor is out-of-
limits.

Related Modules

Minimum, Average

Fig. 53 Maximum module

Fig. 54 Maximum module example

ObVerse Manual: Standard Processor 64

Minimum
Object Type: [Obv\Min]

The Min module (Fig. 55) performs the maths operation to find the
minimum of up to eight values.

When enabled, the operation is:

 V = Minimum(I1, I2, I3, … IX)

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Num Inputs
Number of Inputs (starting from I1) to
include in calculation

X Obj\Num; Range 0..8; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value

V Obj\Float

Example

The ObVerse strategy (Fig. 56) determines the minimum temperature from three sensor values

The Min module’s three input values, I1 to I3, are read from the properties Temp 1, 2, and 3. Input X is set
to ‘3’. The module calculates the minimum of the values, and its output, V, writes the result to the
MinTemp property. Enable is set to ‘1’ (Yes).

Some external task write values into the Temp1, 2, and 3 properties. If the input values were set to ‘21’,
‘22’, and ‘23’, the modules would write the value ‘21’ to the MinTemp property.

Remember it is possible to set Zip inputs so that they give an override value whenever a sensor is out-of-
limits.

Related Modules

Maximum, Average

Fig. 55 Minimum module

Fig. 56 Minimum module example

ObVerse Manual: Standard Processor 65

Modulus-Remainder
Object Type: [Obv\Mod]

The Mod module (Fig. 57) performs the maths operation to divide one
input by the other to calculate the remainder, or modulus.

When enabled, the formula is:

 V = Remainder of (I1 / I2)

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...2
Input 1 is the dividend; Input 2 is the
divisor

Ix Obj\Num; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs and V is
left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value, the remainder

V Obj\Num

Example

The ObVerse strategy (Fig. 58) determines the day-of-month and uses that to decide which of four pumps
to run.

The SysInfo module write the day-of-month into a property. The Mod module divides the day-of-month
by 4; the remainder value in the range 0…3 is used to enable one of four pumps.

PumpRun1 is set to ‘1’ on day-of-month 4, 8, 12, 16, 20, 24, and 28. PumpRun2 is set to ‘1’ on day-of-
month 1, 5, 9, 13, 17, 21, 25, and 29. PumpRun3 is set to ‘1’ on day-of-month 2, 6, 10, 14, 18, 22, 26, and 30.
PumpRun4 is set to ‘1’ on day-of-month 3, 7, 11, 15, 19, 23, 27, and 31.

Related Modules

Multiply, Divide

Fig. 57 Modulus-Remainder
module

Fig. 58 Modulus-Remainder module example

ObVerse Manual: Standard Processor 66

Multiple-Add
Object Type: [Obv\MAdd]

The MAdd module (Fig. 59) performs the maths operation to add up to
eight numbers together.

When enabled, the formula is:

 V = (I1 + I2 + I3 + … + IX)

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Num Inputs
Number of Inputs (starting from Input 1) to
include in calculation

X Obj\Num; Range: 0..8; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value

V Obj\Float

Example

The ObVerse strategy (Fig. 60) adds together five Cars properties, to determine the Total Cars parked.

The MAdd module’s five inputs, I1 to I5, are read from properties Cars 1, 2, 3, 4, and 5. The MAdd modules
adds these together (its X input is set to the number of inputs to add). The output V writes the result to
the property TotalCars. Enable is set to ‘1’ (Yes).

Some external task writes values into the Cars properties. If the five values are set to ‘0’, ‘56’, ’23’, ‘108’,
and ‘12’, the value written to Total Cars will be ‘199’.

Related Modules

Add, Subtract

Fig. 59 Multiple-Add module

Fig. 60 Multiple-Add module example

ObVerse Manual: Standard Processor 67

Multiple-Logical-And
Object Type: [Obv\MAnd]

The MAnd module (Fig. 61) performs the logic operation to determine
whether all its specified inputs are set to a non-zero value. It performs the
logical and operation (AND).

When enabled, the formula is:

 if (I1 and I2 and I3 .. and IX) then
 V = 1
 else
 V = 0

I1 I2 I3 I4 I5 I6 I7 I8 V
0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1

The module contains the following objects:

Description Reference Type
Input x
Input to AND together, where x is in the
range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Num Inputs
Number of Inputs (starting from Input 1) to
include in calculation

X Obj\Num; Range 0..8; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to ‘1’ (Yes) when all required inputs are
all non-zero, otherwise set to ‘0’ (No)

V Obj\NoYes

Example

The ObVerse strategy (Fig. 62) determines whether all requirements have been met before running a
boiler.

Some external tasks write values into the HeatDemand, PumpOk, PumpRunning, DoorShut, and
WindowShow properties. The MAnd module writes the value ‘1’ to RunBoiler only if all five inputs are ‘1’.

Related Modules

Multiple-Logical-Or, Logical-Or, Logical-Exclusive-Or

Fig. 61 Multiple-Logical-And
module

Fig. 62 Multiple-Logical-And module example

ObVerse Manual: Standard Processor 68

Multiple-Logical-Or
Object Type: [Obv\MOr]

The MOr module (Fig. 63) performs the logic operation to determine
whether any of its specified inputs are set non-zero. It performs the logical
or operation (OR).

When enabled, the formula is:

 if (I1 or I2 or I3 .. or IX) then
 V = 1
 else
 V = 0

I1 I2 I3 I4 I5 I6 I7 I8 V
0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 1
1 1 1 1 1 1 1 1 1

The module contains the following objects:

Description Reference Type
Input x
Input to OR together, where x is in the
range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Num Inputs
Number of Inputs (starting from Input 1) to
include in calculation

X Obj\Num; Range 0..8; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to ‘1’ (Yes) if any of the required inputs
is non-zero, otherwise set to ‘0’ (No)

V Obj\NoYes

Example

The ObVerse strategy (Fig. 64) uses binary states from a range of systems to determine whether
something is occupied.

Some external tasks write the LightOn, TvOn, MusicOn, and DoorUnlocked properties. The MOr module
writes the value ‘1’ to the SomeoneIn property if any of the four inputs are ‘1’; otherwise, it writes ‘0’.

Related Modules

Multiple-Logical-And, Logical-Or, Logical-Exclusive-Or

Fig. 63 Multiple-Logical-Or
module

Fig. 64 Multiple-Logical-Or module example

ObVerse Manual: Standard Processor 69

Multiply
Object Type: [Obv\Mult]

The Mult module (Fig. 65) performs the maths operation to multiply two
numbers.

When enabled, the formula is:

 V = I1 x I2

The module contains the following objects:

Description Reference Type
Input x
Inputs to include in calculation, where x is
in the range 1...2
Input 1 is the multiplier; Input 2 is the
multiplicand

Ix Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value, the product

V Obj\Float

Example

The ObVerse strategy (Fig. 66) converts the temperature in degrees Fahrenheit to degrees Celsius, by
using the formula:

°C = (°F - 32) x (5 / 9)

Some external task writes a temperature value (in degrees Fahrenheit) into the Temp DegF property. The
Sub module subtracts 32 from this and writes the result to the private property. The Mult module reads
the private property, multiplies it by 0.5555 (5/9), and writes the final result to the Temp DegC property

Related Modules

Divide, Modulus-Remainder

Fig. 65 Multiply module

Fig. 66 Multiply module example

ObVerse Manual: Standard Processor 70

Num-To-Bit
Object Type: [Obv\NumToBit]

The NumToBit module (Fig. 67) performs the maths operation to set one
output state to ‘1’ (Yes), corresponding to the input value. All other
outputs are set to ‘0’.

When enabled, the formula is:

 if I == 0 then
 O0 = 1
 else if I == 1 then
 O1 = 1
 else if I == 2 then
 O2 = 2
 else if I == 3 then
 O3 = 1
 else if I == 4 then
 O4 = 1
 else if I == 5 then
 O5 = 1
 else if I == 6 then
 O6 = 1
 else if I == 7 then
 O7 = 1

The module contains the following objects:

Description Reference Type
Num
Input to include in calculation. Sets the
corresponding output Num to ‘1’ (Yes)

I Obj\Num: 0…7; Adjustable
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and
outputs are left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Num Is x
The output number, x, is in the range 0…7.
One output is set ‘1’ (Yes) depending on
the input Num. Other outputs are set ‘0’
(No)

Ox Obj\NoYes

Fig. 67 Num-To-Bit module

ObVerse Manual: Standard Processor 71

Example

The ObVerse strategy (Fig. 68) shows a user-adjustable Mode parameter (‘Off’, ‘On’, or ‘Auto’) converted
to individual states for use by the strategy.

The NumToBit module input value I is read from the Mode property. The outputs, O0 to O2, pass the
result to the linked properties. Enable is set to ‘1’ (Yes).

Some external task, perhaps a user via a display, writes a value to the Mode property (‘0’=Off, ‘1’=On, and
‘2’=Auto). The NumToBit writes a ‘1’ (Yes) to the corresponding property IsOff, IsOn, or IsAuto, and sets
the others to ‘0’ (No).

Related Modules

Bit-To-Num, Byte-To-Bits, Bits-To-Byte

Availability

Available in standard and advanced processor versions dated September 2012 and later.

Fig. 68 Num-To-Bit module example

ObVerse Manual: Standard Processor 72

Object-Read
Object Type: [Obv\ObjRead]

The ObjRead module (Fig. 69) performs the remote object operation to
read the value of an object from a task external to the processor.

The module performs its object-read operation only when triggered. Link
the trigger input to a pulser or system-information module.

When enabled, the operation is:

 V = ObjRead(O, A, T, P)

When the module is triggered, it is added to the processors list of remote object tasks. This allows one
Pulser or System-Information module to trigger multiple Object-Read modules. Remember to allow a
pulse time long enough for all modules to complete their action.

The module can use the remote object as either an absolute reference or relative reference. In absolute
mode, the object requested is specified by the remote object reference. In relative mode, if the property
O is present within the ObVerse strategy, then the remote object reference will be prefixed with this
remote object prefix (see Reserved References). If the property O does not exist, or is blank, then the
absolute input has no effect.

The module contains the following objects:

Description Reference Type
Remote Object
The reference of the object to read, either
relative to the object of the process, or an
absolute reference

O Obj\Obj; Adjustable
Default value: ‘’

Absolute
When set ‘0’ (No) the object requested will
be relative to the ObVerse O property,
when present.
When set ‘1’ (Yes) the Remote Object will
be requested as is.

A Obj\NoYes; Adjustable
Default value: 0 (No)

Trigger
When this value changes from ‘0’ (No) to
‘1’ (Yes), the object-read operation is
triggered. Typically, this is linked to a
pulser or system-information module.

T Obj\NoYes; Adjustable
Default value: 0 (No)

Priority Action
Be default, all remote object access
operations are performed in order within
the ObVerse. If set ‘1’ (Yes), this module’s
object-read is performed before others.

P Obj\NoYes; Adjustable
Default value: 0 (No)

Enable
Enables the module’s operation. If set to
‘0’ (No), then no operation occurs

E Obj\NoYes; Adjustable
Default value: 1

Busy
Set ‘1’ (Yes) when the module is triggered
to read the Remote Object and set ‘0’ (No)
when the module completes the
operation.

B Obj\NoYes

Value
Contains the last value read by the module

V Obj\Text; Max chars: 31

Fig. 69 Object-Read module

ObVerse Manual: Standard Processor 73

Description Reference Type
Value Set
Set ‘1’ (Yes) when the value has been read
successfully.
Set ‘0’ (No) when the value fails to read
(after two attempts), and on initialisation

VS Obj\NoYes

Example

The ObVerse strategy (Fig. 70) periodically reads an object reference from an external task.

The ObjRead module has input O set to ‘O.PL’, specifying the object reference to read. Input A is set ‘0’,
indicating a relative reference – so the object would be prefixed by property O in the ObVerse, if present.
Input T is linked to a Pulser module, which will write ‘0’ and ‘1’ alternately to the private property (cycling
every 30 seconds), which is used as a trigger by the ObjRead module.

When the reading is triggered, the output B writes a value of ‘1’ to its connected property (none in the
example), and the read operation is added to the processor’s list of remote object tasks. When the
processor completes this read operation, the module’s output B is set back to ‘0’, and outputs V and VS
are set. If the read was successful, the output value, V, writes the received value to the linked property
Value Read and sets output VS to ‘1’. If the read fails after two attempts, perhaps because the remote
object is not available, then output V is left unchanged, and output VS writes a value of ‘0’ to the Read Ok
property.

Essential Data Objects

Although it is possible to use the ObjRead module to read a value from the device’s Essential Data, it is
easier to link a module’s input directly to a value within Essential Data.

Related Modules

Object-Write

Fig. 70 Object-Read module example

ObVerse Manual: Standard Processor 74

Object-Write
Object Type: [Obv\ObjWrite]

The ObjWrite module (Fig. 71) performs the remote object operation to
write the value of an object to a task external to the processor.

The module performs its object-write operation either when triggered, or
when the value changes when the trigger input is ‘1’. Link the trigger input
to a system-information or pulser module or set it to a constant ‘1’.

When enabled, the operation is:

 B = ObjWrite(O, A, V, T, P)

The module can use the remote object as either an absolute reference or relative reference.

In absolute mode, the object requested is specified by the remote object reference. In relative mode, if
the property O is present within the ObVerse strategy, then the remote object reference will be prefixed
with this remote object prefix (see Reserved References). If the property O does not exist, or is set to
blank, the absolute input has no effect.

The module contains the following objects:

Description Reference Type
Remote Object
The reference of the object to write, either
relative to the object of the process, or an
absolute reference

O Obj\Obj; Adjustable;
Default value: ‘’

Absolute
When set ‘0’ (No) the object requested will
be relative to the ObVerse O property,
when present.
When set ‘1’ (Yes) the Remote Object will
be requested as is.

A Obj\NoYes; Adjustable
Default value: 0 (No)

Value
The value to write to the Remote Object. If
Trigger is set when this value changes, the
write operation is triggered

V Obj\Text; Adjustable; Max chars :31
Default value: ‘’

Trigger
When this value changes from ‘0’ (No) to
‘1’ (Yes), the object-write operation is
triggered.
When set ‘1’ (Yes), the object-write also
occurs when the Value changes.
When set ‘0’ (No), no object-write is
performed.
Typically, this is linked to a system-
information or pulser module.

T Obj\NoYes; Adjustable
Default value: 0 (No)

Priority Action
Be default, all remote object access
operations are performed in order within
the ObVerse. If set ‘1’ (Yes), this module’s
object-write is performed before others.

P Obj\NoYes; Adjustable
Default value: 0 (No)

Enable
Enables the module’s operation. If set to
‘0’ (No), then no operation occurs

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Fig. 71 Object-Write module

ObVerse Manual: Standard Processor 75

Description Reference Type
Busy
Set ‘1’ (Yes) when the module is triggered
to write to the Remote Object and set ‘0’
(No) when the module completes the
operation.

B Obj\NoYes

Example

The ObVerse strategy (Fig. 72) writes a value, when changed and periodically, to an object reference
within an external task.

The ObjWrite module has input O set to ‘O.PL’, specifying the object reference to write. Input A is set ‘0’,
indicating a relative reference – so the object would be prefixed by property O in the ObVerse strategy, if
present. Input T is linked to an inverted hourly pulse, which is usually set to ‘1’ (meaning the value will
write whenever it changes). Every hour, on the hour, the input T will change to ‘0’ then return to ‘1’, again
triggering the write operation –as a background re-write.

When the module is triggered (either by the trigger changing to ‘1’, or the value changing when the
trigger is ‘1’), output B is set to ‘1’ and the operation is added to the processor’s list of remote object
tasks. When the processor completes it write operation, the module writes ‘0’ via output B (not
connected in the example).

Essential Data Objects

Although it is possible to use the ObjWrite module to write a value to the device’s Essential Data, it is
easier to link a module’s output directly to a value within Essential Data.

Related Modules

Object-Read

Fig. 72 Object-Write module example

ObVerse Manual: Standard Processor 76

On-Off-Delay
Object Type: [Obv\OODelay]

The OODelay module (Fig. 73) performs the timer operation to delay a
digital input state, before setting the output value to the same state. An
on and off delay time are specified in seconds.

The input must remain at the ‘1’ (On) state for at least the On Delay time
before the output value is set to ‘1’. Similarly, the input must remain at
the ‘0’ (Off) state for at least the Off Delay time before the output value is
set to ‘0’. Otherwise the output is left unchanged.

Either or both delay times can be set to ‘0’, to remove the validation timer.

When enabled, the operation is:

 onChange(I) and I == 1 then
 if I == 1 for N seconds
 V = I
 onChange(I) and I == 0 then
 if I == 0 for F seconds
 V = I

The module contains the following objects:

Description Reference Type
Input
Input state to delay

I Obj\OffOn; Adjustable;
Default value: 0 (Off)

On Delay (s)
Number of seconds the input state must
remain ‘1’ (On) before setting the Output
Value to ‘1’

N Obj\Float; Adjustable;
Default value: 0

Off Delay (s)
Number of seconds the input state must
remain ‘0’ (Off) before setting the Output
Value to ‘0’

F Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (No)

Output Value
The delayed input state

V Obj\OffOn

Off Delay
(F)

On Delay
(N)

Input 1
(I) 0

Output 1
(V) 0

Fig. 73 On-Off-Delay module

ObVerse Manual: Standard Processor 77

Example

The ObVerse strategy (Fig. 74) ensures that the input state remains ‘1’ (On) for a minimum of 5 seconds
before the output value is set to ‘1’ (On). However, it checks that the input state is ‘0’ (Off) for at least 20
seconds before setting the output value ‘0’ (Off).

Some external task writes a state into the InputState property. If the value changes to ‘1’, the OODelay
waits for 5 seconds before doing anything: if the InputState remains at ‘1’ for 5 seconds (the on delay),
the OODelay writes a value ‘1’ to the OutputState property; if the InputState property changes back to ‘0’
within 5 seconds, the OODelay does not change the OutputState property. Once stabilised in the ‘1’ state,
a similar thing happens when the InputState value changes to ‘0’: the OODelay waits for the ‘off’ delay
before writing ‘0’ to the OutputState property.

Sometimes this function is used to ‘debounce’ an input: if the input flips on and off temporarily when
generally changing between states; or if a temperature fluctuates around an alarm level crossing back
and forth as the value slowly rises.

Fig. 74 On-Off-Delay module example

ObVerse Manual: Standard Processor 78

Optimum-Start-Stop
Object Type: [Obv\OSS]

The OSS module (Fig. 75) performs the control operation to determine the
optimum time to start and stop plant in order to achieve a zone setpoint
within the times specified.

By monitoring the zone temperature after heating starts, the module
learns how quickly the temperature rises (allowing for heat loss to the
outside). Similarly, by monitoring the zone temperature after plant stops,
the module learns how quickly the zone loses heat to the outside. The
module then uses these learned responses to offset start and stop times in
future. The module will continue to learn after the first start-stop cycle.

Optimum-start-stop cannot achieve perfect results, due to factors outside of its control: difference in
solar gain, windows and doors being left in different positions, wind direction or speed, or differing rate
of rise and fall of outside temperature.

When enabled, the operation is:

 O = Oss(P, IT, OT, SP, B, IA)

The module has a simple model of the heat loss and gain. It assumes the heat loss is proportional to the
difference between zone temperature and outside temperature. It calculates a heat loss factor during the
‘heating off’ stage. During ‘heating on’ stage, the module uses its current heat loss factor along with
temperature gains to calculate a heat gain factor. These factors are used on subsequent starts and stops.

During optimum start, if the zone temperature is not within a band of variance by today’s required on-
time, the module learns to start earlier. If the zone temperature reaches this band early, it needs to start
later. During optimum stop, if the zone temperature drops below the band of variance before today’s
required off-time, the module learns to stop later. If the zone temperature is still within the band, it needs
to stop earlier.

The module contains the following objects:

Description Reference Type
Today’s Times
On-Off times to try to control to zone
setpoint

P Obj\Times or Obj\Text; Adjustable; On-off periods: 2 (6
in advanced processors)
Default value: ‘’

Zone Temperature
Temperature inside zone, to control to
setpoint

IT Obj\Float; Adjustable;
Default value: 0

Fig. 75 Optimum-Stop-Start
module

Band (B)

Today’s Times (P)

Optimum
Start Time

Optimum
Stop Time

1
0

Output
State (O)

Zone Setpoint
(SP)

Zone
Temperature

(IT)

ObVerse Manual: Standard Processor 79

Description Reference Type
Outside Temperature
Temperature outside of zone/building.
The module uses this to calculate heat
loss.

OT Obj\Float; Adjustable;
Default value: 0

Zone Setpoint
Required temperature of zone during
Today’s Times

SP Obj\Float; Adjustable;
Default value: 0

Band
The amount of variability in the setpoint
that is acceptable. This is distributed
evenly around the Zone Setpoint, 50%
above and 50% below

B Obj\Float; Adjustable;
Default value: 0

Inverse Action
Inverts module action, used to control
cooling rather than heating.

IA Obj\NoYes; Adjustable;
Default value: 0 (No)

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and O
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Output State
Set ‘1’ (On) to indicate that heating should
be enabled

O Obj\OffOn

Example

The ObVerse strategy (Fig. 76) shows optimum-stop-start used to calculate when to enable heating based
on today’s occupancy times, room temperature setpoint, current room temperature, and outside air
temperature. The occupancy times and setpoint are also used to calculate a heating setpoint, and when
the system is in an optimum start or stop phase of operation.

The Oss module’s P, IT, OT, and SP inputs are read from the OccTimes, TempSetpoint, SpaceTemp, and
OutsideAir properties. The band, input B, is set to ‘1’. Enable is set to ‘1’ (Yes).

Some external task writes the OccTimes and TempSetpoint properties. Some extern task will periodically
write the SpaceTemp and OutsideAir properties. If the TempSetpoint is ‘21’, then because the band to ‘1’
the optimum-stop-start module allows a SpaceTemp in the range 20.5…21.5. If OccTimes is set to ‘09:00-
17:00’, the module will attempt to set HeatControl to ‘1’ (On) in time for the room to reach this
temperature range by 09:00. When the time is 09:00, the module will examine the SpaceTemp value to
determine how it should modify its heat-gain factor: if SpaceTemp is low, it will lower the factor;
otherwise, it will raise the heat-gain factor.

After starting is complete, the module will use the heat-loss factor to determine when to write a ‘0’ to the
HeatControl property. When the time is 17:00, the module will examine the current SpaceTemp value to
determine how it should modify its heat-loss factor: if SpaceTemp is low, it will increase the factor;
otherwise, it will lower the heat-loss factor.

Fig. 76 Optimum-Stop-Start module example

ObVerse Manual: Standard Processor 80

Based on the value of HeatControl, the Gate module outputs a HeatSetpoint of a constant ‘8’ or the
current TempSetpoint: this is the setpoint for the heating system control elsewhere. The Profile module
calculates whether the current time is within the OccTimes value. The LXor module uses the output of the
Profile mode to determine whether the strategy is within optimum start or optimum stop periods, and if
so writes ‘1’ to the StartOrStop property.

Related Modules

Times-State

ObVerse Manual: Standard Processor 81

Profile-Value
Object Type: [Obv\ProfileValue]

The Profile-Value module (Fig. 77) determines a current value from the
device’s current time and a list of time-value pairs.

If necessary, the module can offset the time of the given time-value
pairs, to advance or retard the changes.

When enabled, the operation is:

 if P(time 8) is set and timeNow >= P(Time 8)
 O = P(Value 8)
 else if P(Time 7) is set and timeNow>= P(Time 7)
 O = P(Value 7)
 else if P(Time 6) is set and timeNow>= P(Time 6)
 O = P(Value 6)
 else if P(Time 5) is set and timeNow>= P(Time 5)
 O = P(Value 5)
 else if P(Time 4) is set and timeNow>= P(Time 4)
 O = P(Value 4)
 else if P(Time 3) is set and timeNow>= P(Time 3)
 O = P(Value 3)
 else if P(Time 2) is set and timeNow>= P(Time 2)
 O = P(Value 2)
 else if P(Time 1) is set and timeNow>= P(Time 1)
 O = P(Value 1)
 else
 O = S

The module contains the following objects:

Description Reference Type
Today’s Profile
List of Time-Value pairs for today

P Obj\Profile; Adjustable; Time-Value pairs: 8
Default value: ‘’

Offset (mins)
Number of minutes to adjust the times
within Today’s Profile. Set a positive value
to offset to a later time, set negative for an
earlier time

O Obj\Num: -300…300; Adjustable;
Default value: 0

Start value
Value to use if current time is below the
first time in Today’s Profile.

S Obj\Float: Adjustable
Default value: 0

Fig. 77 Profile-Value module

Time 24:00 20:00 16:00 12:00 08:00 04:00 00:00

1

0

1

0

Occupied State
(O)

Today’s Times (P)

Off Offset
(FO)

On Offset
(NO)

ObVerse Manual: Standard Processor 82

Description Reference Type
Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and O
is left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

Value
The calculated value based on the current
time, Todays’s Profile, and the time offset

O Obj\Float

Example

The ObVerse strategy (Fig. 78) calculates which setpoint to use for a heating system. It caters for a
WeekDay profile and a WeekEnd profile. A Select module uses the current day-of-week to select which of
the two profile-values to use. A Frost Protect value is used if no other value is specified in the profiles. A
Holiday Start date and Holiday Days length can be specified, which are used with a Date-Pulse module to
determine if the current date is within the holiday period. If so, the Gate module chooses the Frost-
Protect value as a setpoint, otherwise the calculated setpoint is used.

Related Modules

Optimum-Start-Stop, Times-State

Availability

Available in standard and advanced processor versions dated February 2022 and later.

Fig. 78 Profile-Value module example

ObVerse Manual: Standard Processor 83

Proportional-Integral-Derivative
Object Type: [Obv\Pid]

The PID module (Fig. 79) performs the control operation to vary an output
value (percent) to try to make a measured input value (such as a
temperature) match a required value (sometimes called a setpoint), in a
closed-loop control system. It can perform proportional, proportional-
integral, or proportional-integral-derivative control.

Proportional Control

The module determines the ‘error’ – how far the measured value is away
from the required value – and multiplies this by a constant, called the gain
K to produce a simple output percent. This means that as the error increases, the output increases,
which causes more effort (for example heating) to be done; this subsequently should increase the
measured value, therefore reduce the error, which in turn reduces the output percentage.

Rather than calculate this constantly when systems are very slow to change, a recalculation period is
specified. The recalculation period depends on the response rate of the system being controlled, as well
as how fast the output needs to be calculated – a building temperature heating system might use a
recalculation time of 15 seconds or more. This is because the temperature changes are typically slow, or
the output movements need to be kept to a minimal to reduce wear on, say, a valve.

If the gain is too high for the response speed of the system, the measured value keeps oscillating and gets
worse over time – reduce the gain. The period of the oscillation is due to the time it takes between
enabling the output and the system delivering the effort to the measured value, and the time between
disabling the output and the system stopping the delivery of the effort. The ‘tuning’ requires time to
monitor the loop output over several oscillation cycles, followed by adjustment, followed by more
tuning.

Pure proportional control suffers if the measured value reaches the required value: the error is zero,
therefore the output is zero, and therefore the effort (for example heating) becomes zero. This appears as
the measured value stabilising (or gently oscillating) below the required value. One solution is to add a
constant ‘offset’ to the required setpoint to make the system ‘stabilise’ around actual required value.

One solution to this ‘adding an offset’ problem is to have the loop itself try to calculate this – the integral

Proportional + Integral Control

This type of control works as proportional control, but also automatically adds small amounts to the
output whilst an error exists. This effectively calculates and adds the offset (discussed above) slowly over
time. The engineer defines the rate to add to the offset, as the time over which a whole gain is added to
the output.

Ideally, the system should cycle a few times, and stabilise at the required value. However, the system
may cycle continuously (or even wildly) due to the gain being too large, or the integral time being too
short.

The gain of a proportional-only loop will need to be decreased when the integral part is enabled,
otherwise too much oscillating occurs when gain and integral act together. Decreasing the gain slows
down the overall response of the system, but it does achieve the requirement eventually.

One solution to this ‘slowing down’ problem: increase the output even more when the required value
changes. This is the effect of derivative.

Fig. 79 Proportional-Integral-
Derivative module

ObVerse Manual: Standard Processor 84

Proportional + Integral + Derivative Control

This type of control works as proportional + integral control, but also monitors the rate of change of the
error and increases the output as the rate of change of the error increases. This has the effect of a quick
burst of extra output when the required value changes. The effect is specified as a period over which the
burst should be applied – the longer the time, the more effect. If the effect becomes too much, it makes
the output, and therefore the system, oscillate.

Derivative control is used less frequently, as it requires more tuning.

When enabled, the operation is:

 V = Pid(I, R, K, TR, TI, TD, IA)

The module contains the following objects:

Description Reference Type
Input
The measured value to control to the
Required value

I Obj\Float; Adjustable;
Default value: 0

Required
The value to attempt to control the Input
to

R Obj\Float; Adjustable;
Default value: 0

Gain
The gain – used to multiply the error by

K Obj\Float; Adjustable;
Default value: 1

Recalculation Time (s)
The period, in seconds, between
recalculating the output

TR Obj\Num; Adjustable;
Default value: 1

Integral Time (s)
The period over which to add the
equivalent of one gain to the output – set
to ‘0’ to disable integral control

TI Obj\Num; Adjustable;
Default value: 0

Derivative Time (s)
The period over which to have a derivative
effect equivalent to a whole gain – set to
‘0’ to disable derivative control

TD Obj\Num; Adjustable;
Default value: 0

Inverse Action
Inverts action, used to control cooling
rather than heating.

IA Obj\NoYes; Adjustable;
Default value: 0 (No)

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and
output V is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Output (%)
This indicates percent of heating (or
cooling) in the range 0...100

V Obj\Float

ObVerse Manual: Standard Processor 85

Example

The ObVerse strategy (Fig. 80) calculates an output percentage, in the range ‘0’..’100’, to control the heat
supply. The Gain (K) is ‘20’, which implies the proportional part of the output will give 100% output if the
temperature is 5 degrees below the Setpoint, because Error x Gain = Output. The integral part of the
output is quite fast, allowing 300 seconds to add another gain to the output – after 5 minutes another
20%, after 10 minutes another 20%, etc.

Some external task writes the Setpoint property. Some task periodically writes into the Current Temp. It
is assumed this occurs every 10-20 seconds, because the module recalculates its output every 20
seconds. Every 20 seconds the Pid module calculates the error, multiplies this by the gain to produce a
proportional element. It also calculates an internal integral element (which is incremented whilst an
error exists). The proportional element and the integral element are added, and the value written to the
OutPercent property.

If the initial Setpoint is ’20’ and the Current Temp is ‘18’, the error is 2, the proportional element will be
40% and the integral element will be 0%, so the module will write ‘40’ to the OutPercent property.

If after 50 seconds the Current Temp is ‘19.5’ (a very fast heating system), the error is now 0.5, the
proportional element is now 10, the integral element is now 50/300 of the gain, or 3.3, so the module
writes ’13.3’ to the OutPercent property.

If after 100 seconds the Current Temp is ’19.9’, the error is now 0.1, the proportional element is therefore
2, the integral element is now 100/300 of the gain, or 6.6, so the module writes ’8.6’ to the OutPercent
property.

If after 110 seconds the Current Temp is ’20’, the error is now 0, the proportional element is 2, the integral
element is now 110/300 of the gain, or 7.3, so the module writes ’7.3’ to the OutPercent property.

If after 120 seconds the Current Temp is ’20.1’, the error is now -0.1, the proportional element is 0, the
integral element is now 100/300 of the gain, or 6.3, so the module writes ’6.3’ to the OutPercent property.

As you can see, the Current Temp overshot the Setpoint, but the integral action is reducing. Ultimately,
the OutPercent will stabilise at a positive value, the Current Temp will match the Setpoint, and the
system will be stable – until the Setpoint changes again

Related Modules

Rescale

Fig. 80 Add module example

ObVerse Manual: Standard Processor 86

Pulser
Object Type: [Obv\Pulser]

The Pulser module (Fig. 81) performs the timer operation to produce a
continuously cycling digital state.

For the cycle period specified (in seconds), the output state will be set ‘1’
(On) for a percentage of this period (specified by an input), and ‘0’ (Off) for
the remainder of this time.

Use the module, for example, to provide a time-based trigger input to modules such as Object-Read,
Usage-Over-Period, etc.

When enabled, the operation is:

 P = 1
 wait for OP% of H
 P = 0
 wait for (100-OP)% of H

The module contains the following objects:

Description Reference Type
Period (s)
The length of the cycle, in seconds

H Obj\Float; Adjustable;
Default value: 0

On Percent (%)
Percent of the Period that the Pulse output
will be set to ‘1’ (On)

OP Obj\Float: 0…100; Adjustable;
Default value: 50

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and P
is left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

Pulse
The calculated output state

P Obj\OffOn

Example

The ObVerse strategy (Fig. 82) shows two examples of using the Pulser module.

The upper example uses a Pulser module output to trigger the reading of an object.

The module has input H set to ‘30’ seconds and input OP set to ‘50’ %. So the output state will be set to
‘1’ (On) for 50% of 30 seconds (15 seconds), then ‘0’ (Off) for 50% of 30 seconds (another 15 seconds),
continuously. The object-read action is performed whenever the trigger input changes from ‘0’ to ‘1’.

Fig. 81 Pulser module

Fig. 82 Add module example

ObVerse Manual: Standard Processor 87

The lower example uses a pulser module to generate a pulse-width modulation (PWM) style output. The
PWM duty cycle is specified by the Percent Open property. A 240 second period, input H, is chosen to stop
the output chattering too much. The output, P, is passed to the value of an object-write. This value will
write on change to a Zip relay output.

Some external task writes a value to the Percent Open property. If the Percent Open has a value of 10,
then at the start of its next cycle, the Pulser module will write ‘1’ to the private property. After 10% of 240
seconds (24 seconds) it will write ‘0’ to the private property. After another 216 seconds the cycle will end
and the next cycle starts with the module reading the inputs again.

Related Modules

On-Off-Delay, System-Information

ObVerse Manual: Standard Processor 88

Raise-Lower
Object Type: [Obv\RaiseLower]

The RaiseLower module (Fig. 83) performs the control operation to
regulate flow through a valve fitted with a motor to drive the valve both
open (raise the flow) and closed (lower the flow). When the motor is not
driven, the valve remains in position. This allows control over the amount
of flow through the valve.

Due to gearing, the motor takes time to drive the valve from fully closed to
fully open, and vice versa. This period is called the ‘stroke time’ and
determines the amount of time needed to reposition the valve to the required position using one of the
motor drives.

The module has a ‘precision’ input. This reduces motor usage by only repositioning the valve when a
significant change occurs – the required position must change more than the precision input before
repositioning occurs.

As the required valve position changes and the module continuously repositions the valve, the valve’s
actual position can drift away from where the module calculates. To overcome this drifting, the module
automatically overdrives the motors when the fully open or fully closed positions are required, to ensure
the valve is in the desired position. If the module drives on continuously operating plant, the module
supports a resynchronisation trigger, which causes the module to overdrive the valve to the nearest end
position before driving it back to the required position.

When enabled, the operation is:

 if I > (Iprevious + P) then
 R = 1
 wait for (I - Iprevious)% of S
 R = 0
 else if I < (Iprevious – P) then
 L = 1
 wait for (Iprevious - I)% of S
 L = 0

The module contains the following objects:

Description Reference Type
Input Position (%)
Required position of valve, as a percentage
open

I Obj\Float: 0…100; Adjustable
Default value: 0

Stroke time (s)
The time required to move the value from
fully closed to fully open. Also used as
overdrive time at either end of stroke

S Obj\Num: 0…3600; Adjustable
Default value: 0

Precision (%)
Minimum change in Input position
required to cause a raise/lower movement

P Obj\Float: 0…50; Adjustable
Default value: 0

Resync Trigger
When this changes from ‘0’ (No) to ‘1’
(Yes), the module starts a
resynchronisation of the valve’s position,
by overdriving to the nearest end, before
driving back to the Input position

T Obj\NoYes;
Default value: 0 (No)

Fig. 83 Raise-Lower module

ObVerse Manual: Standard Processor 89

Description Reference Type
Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and
outputs R and L are left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

Raise
Output set to ‘1’ (Yes) when valve opening
is required

R Obj\NoYes

Lower
Output set to ‘1’ (Yes) when valve closing is
required

L Obj\NoYes

Example

The ObVerse strategy (Fig. 84) uses a Pid module to determine the percentage of heat required, based on
the difference between the Temp and the Setpoint parameters. The RaiseLower module uses this heat
demand to control a valve position, passing the raise and lower outputs to Zip digital outputs using the
ObjWrite modules.

The RaiseLower module’s input position, I, is provided by a Pid module. Stroke time, S, is set to ‘120’
seconds, and precision, P, to ‘5’. Enable is set to ‘1’ (Yes).

Some external task writes the Setpoint and periodically writes the Temp property. These are fed into a
proportional-only Pid module, which in turn feeds the RaiseLower module. When the Temp value is
written which causes the Pid output to change by more than 5% (the precision input to the
RaiseLower),the RaiseLower module will set its output R to ‘1’ (On) for a percentage of the stroke time,
depending on where it had driven it to before, and the amount of changes of its input I. When the Pid
output decreases value by more than 5, then the RaiseLower module will set its output L to ‘1’ (On) for a
percentage of the stroke time, depending on where it had driven it before, and the amount of change of
its input I.

If the Temp value stays higher than the Setpoint, the Pid will write ‘0’ to the private property. The
RaiseLower will write a ‘1’ to its output L for an ‘overdrive’ period, thereby ensuring that the valve really
is at its lowest level.

Related Modules

Pulser

Availability

Available in standard and advanced processor versions dated November 2015 and later.

Fig. 84 Raise-Lower module example

ObVerse Manual: Standard Processor 90

Random
Object Type: [Obv\Random]

The Random module (Fig. 85) performs the maths operation to create a
random number.

The module outputs a pseudo-random floating-point number in the range
0 ... 0.9999 every time its input value changes. The output is not
guaranteed to be truly random but can be used for examples and demos.

When enabled, the operation is:

 if I1 != I1previous then
 V = Random()

It contains the following sub-objects:

Description Reference Type
Input Trigger
Input to trigger the calculation of a new
random output

I1 Obj\Float; Adjustable
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

Value
The last calculated random value

V Obj\Float: 0…0.9999

Example

The ObVerse strategy (Fig. 86) produces a random number in the range 0 to 99.9999, changing every 5
seconds.

The Pulser module cycles its digital output every 10 seconds – 5 seconds on, and 5 seconds off. The
Random module generates a new random number (in the range 0…0.9999) every time its input changes.
Since the Random module never outputs 1.0, the Rescale module effectively rescales from 0…0.9999 to
0…99.99, producing a random percentage value suitable for demonstrating.

Fig. 85 Random module

 Fig. 86 Random module example

ObVerse Manual: Standard Processor 91

Rescale
Object Type: [Obv\Rescale]

The Rescale module (Fig. 87) performs the maths operation to rescale its
input to its output, using an input range and an output range. It assumes
the input and output are proportional. It also limits the output value to the
output range.

When enabled, the operation is:
 if (I > IH) then
 O = OH
 else if (I < IL) then
 O = OL
 else
 O = OH – ((IH - I) x (OH - OL) / (IH - IL))

The module contains the following objects:

Description Reference Type
Input
The input value to rescale

I Obj\Float; Adjustable
Default value: 0

Input High
The high limit of the input range

IH Obj\Float; Adjustable
Default value: 100

Input Low
The low limit of the input range

IL Obj\Float; Adjustable
Default value: 0

Output High
The high limit of the output range

OH Obj\Float; Adjustable
Default value: 100

Output Low
The low limit of the output range

OL Obj\Float; Adjustable
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and O
is left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

Output
The last calculated value

O Obj\Float

Example

The ObVerse strategy (Fig. 88) rescales a number from the input range 0 to 0.9999 to the output range 0 to
99.99.

The Pulser module cycles its digital output every 10 seconds – 5 seconds on, and 5 seconds off. The
Random module generates a new random number (in the range 0…0.9999) every time its input changes.
Since the Random module never outputs 1.0, the Rescale module effectively rescales from 0…0.9999 to
0…99.99, producing a random percentage value suitable for demonstrating.

Related Modules

Proportional-Integral-Derivative

Fig. 87 Rescale module

Fig. 88 Rescale module example

ObVerse Manual: Standard Processor 92

Select
Object Type: [Obv\Select]

The Select module (Fig. 89) performs the logic operation to select one of
its inputs to copy to its output.

When enabled, the operation is:

 if X == 0 then
 V = I1
 else if X == 1 then
 V = I2
 else if X == 2 then
 V = I3
 else if X == 3 then
 V = I4
 else if X == 4 then
 V = I5
 else if X == 5 then
 V = I6
 else if X == 6 then
 V = I7
 else if X == 7 then
 V = I8
 else
 V = 0

The module contains the following objects:

Description Reference Type
Input x
Input x, where x is in the range 1...8

Ix Obj\Float; Adjustable;
Default value: 0

Selector
Used to select which input to pass to the
output value

X Obj\Num; Range 0..7; Adjustable;
Default value: 0 (Input1)
Values: 0=Input1, 1=Input2, 2=Input 3, 3=Input4,
4=Input5, 5=Input6, 6=Input7, 7=Input8

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
Set to selected input value

V Obj\Float

Fig. 89 Select module

ObVerse Manual: Standard Processor 93

Example

The ObVerse strategy (Fig. 90) uses a Mode property to select one of four heating setpoints.

The Select module has input 1 set to ‘5’, input 2 is linked to the result of a user setpoint minus 3, input 3 is
linked to a user setpoint property, and input 4 is set to ‘23’. The selector, X, is linked to the Mode
property. Enable is set to ‘1’ (Yes).

Some external task writes a value to the Setpoint and Mode properties. If Setpoint holds ‘21’, the Sub
module subtracts 3 from it to produce ‘18’, which it writes to a private property. If the value within Mode
is ‘2’, the Select module writes the value from its input I3, ‘21’, via its output V to the ActualSP property. If
the Mode property changed to ‘0’, the select module writes the value from its input I1, ‘5’, via its output V
to the ActualSP property.

Related Modules

Num-To-Bit

Fig. 90 Select module example

ObVerse Manual: Standard Processor 94

Smooth
Object Type: [Obv\Smooth]

The Smooth module (Fig. 91) smooths an input value to produce an
output value. Various smoothing functions can be used and are defined
below.

When enabled, the formula is:

 V = Smooth (I)

The module contains the following objects:

Description Reference Type
Input
Input to smooth

I Obj\Float; Adjustable;
Default value: 0

Type of Smooth
The input chooses the type of smoothing
to be performed on the Input value

T Obj\Num; Adjustable; Range 0...1

Rate (secs)
Seconds between sampling of Input and
recalculating of Value

R Obj\Num; Adjustable; Range: 0...300

Factor
A factor associated with the Type of
Smooth chosen. See below

F Obj\Float; Adjustable; See below

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The output value of the smoothed input

V Obj\Float

Type of Smooth

This module implements different smoothing function. The Type of Smooth input selects the function
used, which in turn selects the meaning of the Factor input

Type of Smooth Function Factor use
0 = Step If the Value is below the Input, the Factor is added to

the Value each recalculation
Maximum step size, as
floating point number. E.g.
0.02

1 = Average The sampled value is added to a list of previous
samples, and the average taken of the latest sample,
where the Factor specifies the number of latest values
to use.

Number of samples to
average, as an integer
between 1 and 16.

Fig. 91 Smooth module

ObVerse Manual: Standard Processor 95

Example

The ObVerse strategy (Fig. 92) smooths the value coming in from the temperature sensor.

Some external task writes a value to the Temp Sensor property. Rate of calculation is 5 seconds (as the
temperature is only changing every 5 seconds), Type of Smooth 1 is Average, with the last 10 values being
averaged.

Related Modules

Average

Fig. 92 Smooth module example

ObVerse Manual: Standard Processor 96

Square-Root
Object Type: [Obv\Sqrt]

The Sqrt module (Fig. 93) performs the maths operation to calculate the
square root of its input.

When enabled, the formula is:

 V = √𝐈𝐈𝟏𝟏

The module contains the following objects:

Description Reference Type
Input
Input to calculate the square root of

I1 Obj\Float; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Value
The last calculated value

V Obj\Float

Example

The ObVerse strategy (Fig. 94) calculates the radius of a circle, from the area.

Some external task writes a value to the Area property. If the Area property has a value of ‘60’, the Div
module outputs a value of ’19.0985’ to the private property, which is used by the Sqrt module to write a
value of ‘4.3702’ to the Radius property.

Related Modules

Divide, Modulus-Remainder

Fig. 93 Square-Root module

Fig. 94 Square-Root module example

ObVerse Manual: Standard Processor 97

Subtract
Object Type: [Obv\Sub]

The Sub module (Fig. 95) performs the maths operation to subtract one
input from the other.

When enabled, the formula is:

 V = I1 - I2

The module contains the following objects:

Description Reference Type
Input x
Input to include in calculation, where x is
in the range 1...2
Input 1 is the minuend; Input 2 is the
subtrahend

Ix Obj\Float; Adjustable
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

Value
The last calculated value, the difference

V Obj\Float

Example

The ObVerse strategy (Fig. 96) converts the temperature in degrees Fahrenheit to degrees Celsius, by
using the formula:

°C = (°F - 32) x (5 / 9)

Some external task writes a temperature value (in degrees Fahrenheit) into the Temp DegF property. The
Sub module subtracts 32 from this and writes the result to the private property. The Mult module reads
the private property, multiplies it by 0.5555 (5/9), and writes the result to the Temp DegC property.

Related Modules

Add, Multiple-Add

Fig. 95 Subtract module

Fig. 96 Subtract module example

ObVerse Manual: Standard Processor 98

System-Information
Object Type: [Obv\SysInfo]

The SysInfo module (Fig. 97) performs the system operation to make
fundamental system information from the device available for use in
ObVerse.

When enabled, the input value I selects which system information is
output:

Input Information Value
1 Current time – seconds 0…59
2 Current time – minutes 0…59
3 Current time – hours 0…23
4 Current date – day 1…31
5 Current date – month 1…12
6 Current date – year Four-digit year, e.g. 2016
7 Current date – day-of-week 0=Monday, 1=Tuesday, 2=Wednesday, 3=Thursday,

4=Friday, 5=Saturday, 6=Sunday
10 Pulse when Processor starts to run

(either on ObVerse download or device
restart)

1, momentarily for a single processor cycle, then 0

11 Pulse on each second change in time 1, momentarily for a single processor cycle, then 0
12 Pulse on each minute change in time 1, momentarily for a single processor cycle, then 0
13 Pulse on each hour change in time 1, momentarily for a single processor cycle, then 0
14 Pulse on each day change 1, momentarily for a single processor cycle, then 0
15 Pulse on each month change 1, momentarily for a single processor cycle, then 0

The module contains the following objects:

Description Reference Type
Input
Set to the system information required.
See table above

I Obj\Num; Adjustable
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and V
is left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

Value
The value of the specified input

V Obj\Text

Example

The ObVerse strategy (Fig. 98) uses one system-information module to provide an hourly pulse that
triggers reading an object, and another to determine when the time is exactly 23:00.

Fig. 97 System-Information
module

Fig. 98 System-Information module example

ObVerse Manual: Standard Processor 99

The upper SysInfo module has its input set to ‘13’, so provides a pulse output each time the hour
changes. This output is set to ‘1’ for a single cycle of the ObVerse processor, before being reset to ‘0’. This
trigger is used by an ObjRead module, to trigger its operation each hour.

The lower SysInfo module has its input set to ‘3’, so provides the hour value of the current time. This is
linked to an Equal module to determine when it is ‘23’. A LAnd module combines the Equal output and
the hourly pulse from the top SysInfo module to pulse an output when it is exactly 23:00.

Related Modules

Object-Read, Date-Pulse

ObVerse Manual: Standard Processor 100

Text-Equal
Object Type: [Obv\TxtEqual]

The Text-Equal module (Fig. 99) compares two strings of text and determines
whether they are the same.

It contains the following sub-objects:

Description Reference Type
Text x
The text to test for equality, where x is in
the range 1...2

Tx Obj\Text; Adjustable; Max chars:127; Default value:

Enable
If set to 0, output is not changed

E Obj\NoYes; Adjustable; Default value:1

Same
Whether the two texts are the same

S Obj\NoYes

Example

The ObVerse strategy (Fig. 100) determines whether the text value in the Units (U) property is ‘kWh’, , and
if so it multiplies the Energy Value by 1000 to produce a Watthour value. If the Units value is not kWh, it
passes the unchanged value into the Wh property.

Related Modules

Text-In-Text, Text-Join, Text-Split, Text-Length

Availability

Available in advanced processor, and in standard processor version dated August 2023 and later.

Fig. 99 Text-Equal
module

Fig. 100 Text-Equal module example

ObVerse Manual: Standard Processor 101

Text-In-Text
Object Type: [Obv\TxtInTxt]

The Text-In-Text module (Fig. 101) locates one piece of text within another,
and outputs the position in the first text that the second starts, or 0 if it is not
located.

It contains the following sub-objects:

Description Reference Type
Text x
The text to search for, and search, where x
is in the range 1...2. Text 2 is searched for
in Text 1

Tx Obj\Text; Adjustable; Max chars:127; Default value:

Enable
If set to 0, the item is not drawn

E Obj\NoYes; Adjustable; Default value:1

Position
Where the second text is found in the first,
or zero (0) if not found

P Obj\Num

Example

The ObVerse strategy (Fig. 102) removes a chunk of text from some original text. The TxtInTxt module
determines whether, and where, the chunk is within the original text. The TxtLen module determines the
length in characters of the chunk to remove. If the chunk is found, the TxtSplit splits off the first part of
the text. If the chunk is found, the Add and Gate modules determine where to split off the second part of
the main text. The TxtJoin module joins the two parts back together.

Related Modules

Text-Equal, Text-Join, Text-Split, Text-Length

Availability

Available in advanced processor, and in standard processor version dated August 2023 and later.

Fig. 101 Text-In-Text
module

Fig. 102 Text-Join module example

ObVerse Manual: Standard Processor 102

Text-Join
Object Type: [Obv\TxtJoin]

The Text-Join module (Fig. 103) concatenates two strings of text and
produces a single string of text.

It contains the following sub-objects:

Description Reference Type
Text x
The text to join, where x is in the range
1...2

Tx Obj\Text; Adjustable; Max chars:127; Default value:

Enable
If set to 0, the item is not drawn

E Obj\NoYes; Adjustable; Default value:1

Text
Set to Text 1 followed by Text 2

T Obj\Text; Max chars 127

Example

The ObVerse strategy (Fig. 104) removes a chunk of text from some original text. The TxtInTxt module
determines whether, and where, the chunk is within the original text. The TxtLen module determines the
length in characters of the chunk to remove. If the chunk is found, the TxtSplit splits off the first part of
the text. If the chunk is found, the Add and Gate modules determine where to split off the second part of
the main text. The TxtJoin module joins the two parts back together.

Related Modules

Text-Equal, Text-In-Text, Text-Split, Text-Length

Availability

Available in advanced processor, and in standard processor version dated August 2023 and later.

Fig. 103 Text-Join module

Fig. 104 Text-Join module example

ObVerse Manual: Standard Processor 103

Text-Length
Object Type: [Obv\TxtLen]

The Text-Length module (Fig. 105) calculates the length of a piece of text, in
characters.

It contains the following sub-objects:

Description Reference Type
Text
The text to find the length of

T Obj\Text; Adjustable; Max chars:127; Default value:

Enable
If set to 0, the item is not drawn

E Obj\NoYes; Adjustable; Default value:1

Length
The length of the Text.

L Obj\Num

Example

The ObVerse strategy (Fig. 106) removes a chunk of text from some original text. The TxtInTxt module
determines whether, and where, the chunk is within the original text. The TxtLen module determines the
length in characters of the chunk to remove. If the chunk is found, the TxtSplit splits off the first part of
the text. If the chunk is found, the Add and Gate modules determine where to split off the second part of
the main text. The TxtJoin module joins the two parts back together.

Related Modules

Text-Equal, Text-In-Text, Text-Join, Text-Split

Availability

Available in advanced processor, and in standard processor version dated August 2023 and later.

Fig. 105 Text-Length
module

Fig. 106 Text-Join module example

ObVerse Manual: Standard Processor 104

Text-Split
Object Type: [Obv\TxtSplit]

The Text-Split module (Fig. 107) splits one string of text into two pieces.

It contains the following sub-objects:

Description Reference Type
Text
The text to split into two parts

T Obj\Text; Adjustable; Max chars:127; Default value:

Position
The character position to split the text –
i.e. the position of the first character of the
second part. If Position has a value that
doesn’t correspond with a valid character
position in Text, the text is not split and all
the text is put into Text 1 output

P Obj\Num; Adjustable; Default Value: 0

Enable
If set to 0, the item is not drawn

E Obj\NoYes; Adjustable; Default value:1

Text x
The text after being split, where x is in the
range 1...2. Text 1 is the first part, and Text
2 is the second

Tx Obj\Text; Max chars:127

Example

The ObVerse strategy (Fig. 108) removes a chunk of text from some original text. The TxtInTxt module
determines whether, and where, the chunk is within the original text. The TxtLen module determines the
length in characters of the chunk to remove. If the chunk is found, the TxtSplit splits off the first part of
the text. If the chunk is found, the Add and Gate modules determine where to split off the second part of
the main text. The TxtJoin module joins the two parts back together.

Related

Text-Equal, Text-In-Text, Text-Join, Text-Length

Availability

Available in advanced processor, and in standard processor version dated August 2023 and later.

Fig. 107 Text-Split

module

Fig. 108 Text-Join module example

ObVerse Manual: Standard Processor 105

Times-State
Object Type: [Obv\TimesState]
Object Type: [Obv\Profile]

The Times-State module (Fig. 109) determines the current timer state
from a set of on-off times, based on the device’s current time.

If necessary, the module can offset the on and off times, forward or
backwards.

This module was previously called Profile.

When enabled, the operation is:

 if (timeNow > (startTime(P) + NO)) and (timeNow < (endTime(P) + FO)) then
 O = 1
 else
 O = 0

The module contains the following objects:

Description Reference Type
Today’s Times
On-Off times for today

P Obj\Times; Adjustable; On-off periods: 5;
Default value: ‘’

On Offset (mins)
Number of minutes to adjust the on time
from Today’s Times. Set a positive value to
offset the on state to a later time, set
negative for an earlier time

NO Obj\Num: -300…300; Adjustable;
Default value: 0

Off Offset (mins)
Number of minutes to adjust the off time
from Today’s Times. Set a positive value to
offset the off state to a later time, set
negative for an earlier time

FO Obj\Num: -300…300; Adjustable;
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and O
is left unchanged

E Obj\NoYes; Adjustable;
Default value: 1 (Yes)

Occupied State
The calculated state

O Obj\OffOn

Fig. 109 Times-State module

Time 24:00 20:00 16:00 12:00 08:00 04:00 00:00

1

0

1

0

Occupied State
(O)

Today’s Times (P)

Off Offset
(FO)

On Offset
(NO)

ObVerse Manual: Standard Processor 106

Example

The ObVerse strategy (Fig. 110) calculates when different types of lighting are turned on and off, from a
single set of on-off times by using the offset capabilities of the Profile module.

Each Times-State module read its P input from the Occupied property, which provides on-off times for
today. Each Times-State module writes its output a property. The enable is set to ‘1’ (Yes)

An external task writes a value to the Occupied property.

If it is set to ’08:30-17:30’, then because the first Times-State module has its NO and FO inputs set to ‘0’,
the Times-State module uses the current time to determine whether to write ‘0’ or ‘1’ to the Display
Lights property – if the current time is between the 08:30 and 17:30, ‘1’ (On) will be written. As the current
time changes, the Profile module recalculate whether to write ‘0’ or ‘1’ to the Display Lights property.

The second Times-State module has NO set to ‘-15’ and FO to ‘15’, which will write a value of ‘1’ to Back
Lights property if the current time is between 08:15 (08:30 - 15 minutes) and 17:45 (17:30 + 15 minutes).

The third Times-State module will write a ‘1’ to the External Lights property between 08:00 and 18:00.

Related Modules

Optimum-Start-Stop, Profile-Value, Date-Pulse

Availability

Available in standard and advanced processor versions dated February 2022 and later. Prior to then,
called Profile module.

Fig. 110 Profile module example

ObVerse Manual: Standard Processor 107

Usage-Over-Period
Object Type: [Obv\Usage]

The Usage module (Fig. 111) provides the maths operation to determine,
from an incrementing input, how much the input has increased during a
period.

The module allows for the rollover of the incrementing value, rather than
producing a large negative usage.

When enabled, the operation is:

 T = Ip – I
 if (P) then
 L = T
 Ip = I

The module contains the following objects:

Description Reference Type
Input
Input of the incrementing, or
accumulated, value

I Obj\Num; Adjustable
Default value: 0

End Period Pulse
When this changes from ‘0’ (Off) to ‘1’ (On),
the current period ends, and a new period
starts. The usage for This Period is copied
to Last Period, and This Period usage is set
to ‘0’.

P Obj\NoYes; Adjustable
Default value: 0 (No)

Maximum
If set to a value, then when the Input rolls
around to zero, it is assumed the usage to
have rolled through this maximum value.
If set to ‘0’, then when the Input rolls
around to zero, the module will estimate
the maximum value.

M Obj\Num; Adjustable
Default value: 0

Enable
Enables the module’s operation. If set to
‘0’ (No), then no calculation occurs, and
outputs are left unchanged

E Obj\NoYes; Adjustable
Default value: 1 (Yes)

This Period
The increments that have occurred since
the End Period Pulse occurred.

T Obj\Num

Last Period
The increments that occurred during the
last period

L Obj\Num

Fig. 111 Usage-Over-Period
module

ObVerse Manual: Standard Processor 108

Example

The ObVerse strategy (Fig. 112) calculates how much energy was used in the last hour.

The Usage module receives an input value from an energy meter. An hourly pulse from the SysInfo
module triggers the Usage module to calculate the energy used in the last complete hour, which is
passed to the Used parameter. Energy used in the current hour is passed to the So far parameter.

Some external task writes a metered value to the Energy property. If the value is ‘123’ when the SysInfo
pulse occurs, the Usage module copies the output value T to output value L, and remembers the value at
its input I.

Subsequently, when the Energy property holds ‘127’, the module subtracts its remembered value from
that read by input I, and writes the value, ‘4’, via output T to the So far property.

Some time later, when the Energy property holds ‘135’, the module subtracts its remembered value from
that read by input I, and writes the value, ‘12’, via output T to the So far property.

Some time later, when the Energy property holds ‘140’ and So far holds ‘17’, the hourly pulse occurs: ‘17’
is written to the Used property, the Energy value ‘140’ is remembered, and subtracted internally from the
current Energy ‘140’ to produce a value of ‘0’, which is then written to the So far property.

Related Modules

Counter, Latch

Availability

Available in standard and advanced processor versions dated February 2016 and later.

Delay
Object Type: [Obv\Delay]

The Delay module is deprecated and should not be used on new ObVerse projects. We recommend using
the On-Off-Delay module instead.

Fig. 112 Usage-Over-Period module example

ObVerse Manual: Standard Processor 109

ObVerse Standard Processor Versions
Version Build Date Details
1.0 26/10/2006 ObvProcess released
1.0 01/09/2012 Added modules: BitsToByte, BitToNum, ByteToBits, Linearize, and NumToBit
1.0 01/04/2015 Added modules: Latch, and LeadLag
1.0 01/11/2015 Added module: RaiseLower
1.0 01/02/2016 Added module: Usage
1.1 16/03/2016 Added driver object T to provide information on Object Modules.

Re-ordered ObVerse modules for use with ObvEditor
1.1 17/03/2017 Added direct links to Essential Values
1.1 14/09/2017 General optimisation
1.1 01/11/2018 Fix: Rescale module divide by zero error

Fix: Resolved issues with OODelay (restart fix), Counter (reset fix).
Added support for cancelling upload/download in ObvEditor.

1.1 22/02/2022 Added Times-State (renamed from Profile), Profile-Value, Date-Pulse, and Smooth
module types
Added Profile, Times, and DateTime property types
Mod: Random module updated
Mod: RaiseLower – limit-at-100 movement added, changed resync error to 10% or
movement (previously 50%)

1.1 01/08/2023

Added Last-Change module type.
Added Text-Equal, Text-In-Text, Text-Join, Text-Length, and Text-Split module
types, previously only available in advanced processor version.

This document is subject to change without notice and does not
represent any commitment by North Building Technologies Ltd.

ObSys and Commander are trademarks of North Building
Technologies Ltd. All other trademarks are property of their respective
owners.

© Copyright 2025 North Building Technologies Limited.

Author: TM
Checked by: JF

Document issued 28/01/2025.

Next Steps…
If you require help, contact support on 01273 694422 or visit www.northbt.com/support

North Building Technologies Ltd
+44 (0) 1273 694422
support@northbt.com
www.northbt.com

http://www.northbt.com/support

	What is ObVerse?
	Processors
	Properties, Modules, and Comments
	Editing ObVerse

	Quick Start
	Edit ObVerse in a Processor

	Processors
	Standard Processors

	Properties
	Private Properties
	Public Properties
	Type Conversion

	Reserved Public Properties
	Modules
	Inputs
	Outputs

	Comments
	Direct Access to Essential Values
	Property Types in Standard Processors
	ENum
	Object Type: [Obj\ENum]

	Float
	Object Type: [Obj\Float]

	NoYes
	Object Type: [Obj\NoYes]

	Num
	Object Type: [Obj\Num]

	Obj
	Object Type: [Obj\Obj]

	OffOn
	Object Type: [Obj\OffOn]

	Text
	Object Type: [Obj\Text]

	Times
	Object Type: [Obj\Times]

	Profile
	Object Type: [Obj\Profile]

	DateTime
	Object Type: [Obj\DateTime]

	Module Types
	Maths
	Logic
	Control
	Text
	Timers
	System
	Object
	Example Macros
	Add
	Object Type: [Obv\Add]
	Example
	Related Modules

	Alarm
	Object Type: [Obv\Alarm]
	Example

	Average
	Object Type: [Obv\Ave]
	Example
	Related Modules

	Bits-To-Byte
	Object Type: [Obv\BitsToByte]
	Example
	Related Modules
	Availability

	Bit-To-Num
	Object Type: [Obv\BitToNum]
	Example
	Related Modules
	Availability

	Byte-To-Bits
	Object Type: [Obv\ByteToBits]
	Example
	Related Modules
	Availability

	Counter
	Object Type: [Obv\Counter]
	Example

	Date-Pulse
	Object Type: [Obv\DatePulse]
	Example
	Related Modules
	Availability

	Divide
	Object Type: [Obv\Div]
	Example
	Related Modules

	Equal
	Object Type: [Obv\Equal]
	Example
	Related Modules

	Feedback
	Object Type: [Obv\Feedback]
	Example

	Gate
	Object Type: [Obv\Gate]
	Example
	Related Modules

	Greater
	Object Type: [Obv\Gt]
	Example
	Related Modules

	Hysteresis
	Object Type: [Obv\Hyst]
	Example
	Related Modules

	Last-Change
	Object Type: [Obv\LastChange]
	Example
	Related Modules
	Availability

	Latch
	Object Type: [Obv\Latch]
	Example
	Related Modules
	Availability

	Lead-Lag
	Object Type: [Obv\LeadLag]
	Example
	Availability

	Less
	Object Type: [Obv\Less]
	Example
	Related Modules

	Linearize
	Object Type: [Obv\Linearize]
	Example
	Related Modules
	Availability

	Logical-And
	Object Type: [Obv\LAnd]
	Example
	Related Modules

	Logical-Inverse
	Object Type: [Obv\LInv]
	Example

	Logical-Exclusive-Or
	Object Type: [Obv\LXor]
	Example
	Related Modules

	Logical-Or
	Object Type: [Obv\LOr]
	Example
	Related Modules

	Maximum
	Object Type: [Obv\Max]
	Example
	Related Modules

	Minimum
	Object Type: [Obv\Min]
	Example
	Related Modules

	Modulus-Remainder
	Object Type: [Obv\Mod]
	Example
	Related Modules

	Multiple-Add
	Object Type: [Obv\MAdd]
	Example
	Related Modules

	Multiple-Logical-And
	Object Type: [Obv\MAnd]
	Example
	Related Modules

	Multiple-Logical-Or
	Object Type: [Obv\MOr]
	Example
	Related Modules

	Multiply
	Object Type: [Obv\Mult]
	Example
	Related Modules

	Num-To-Bit
	Object Type: [Obv\NumToBit]
	Example
	Related Modules
	Availability

	Object-Read
	Object Type: [Obv\ObjRead]
	Example
	Essential Data Objects
	Related Modules

	Object-Write
	Object Type: [Obv\ObjWrite]
	Example
	Essential Data Objects
	Related Modules

	On-Off-Delay
	Object Type: [Obv\OODelay]
	Example

	Optimum-Start-Stop
	Object Type: [Obv\OSS]
	Example
	Related Modules

	Profile-Value
	Object Type: [Obv\ProfileValue]
	Example
	Related Modules
	Availability

	Proportional-Integral-Derivative
	Object Type: [Obv\Pid]
	Proportional Control
	Proportional + Integral Control
	Proportional + Integral + Derivative Control
	Example
	Related Modules

	Pulser
	Object Type: [Obv\Pulser]
	Example
	Related Modules

	Raise-Lower
	Object Type: [Obv\RaiseLower]
	Example
	Related Modules
	Availability

	Random
	Object Type: [Obv\Random]
	Example

	Rescale
	Object Type: [Obv\Rescale]
	Example
	Related Modules

	Select
	Object Type: [Obv\Select]
	Example
	Related Modules

	Smooth
	Object Type: [Obv\Smooth]
	Type of Smooth
	Example
	Related Modules

	Square-Root
	Object Type: [Obv\Sqrt]
	Example
	Related Modules

	Subtract
	Object Type: [Obv\Sub]
	Example
	Related Modules

	System-Information
	Object Type: [Obv\SysInfo]
	Example
	Related Modules

	Text-Equal
	Object Type: [Obv\TxtEqual]
	Example
	Related Modules
	Availability

	Text-In-Text
	Object Type: [Obv\TxtInTxt]
	Example
	Related Modules
	Availability

	Text-Join
	Object Type: [Obv\TxtJoin]
	Example
	Related Modules
	Availability

	Text-Length
	Object Type: [Obv\TxtLen]
	Example
	Related Modules
	Availability

	Text-Split
	Object Type: [Obv\TxtSplit]
	Example
	Related
	Availability

	Times-State
	Object Type: [Obv\TimesState]
	Object Type: [Obv\Profile]
	Example
	Related Modules
	Availability

	Usage-Over-Period
	Object Type: [Obv\Usage]
	Example
	Related Modules
	Availability

	Delay
	Object Type: [Obv\Delay]

	ObVerse Standard Processor Versions

